Computational protein design

Wait 5 sec.

Jiang, L. et al. De novo computational design of retro-aldol enzymes. Science 319, 1387–1391 (2008).Article  ADS  MATH  Google Scholar Arnold, F. H. Innovation by evolution: bringing new chemistry to life (nobel lecture). Angew. Chem. Int. Ed. 58, 14420–14426 (2019).Article  Google Scholar Winter, G. Harnessing evolution to make medicines (nobel lecture). Angew. Chem. Int. Ed. 58, 14438–14445 (2019).Article  Google Scholar Woolfson, D. N. A brief history of de novo protein design: minimal, rational, and computational. J. Mol. Biol. 433, 167160 (2021).Article  MATH  Google Scholar Chu, A. E., Lu, T. & Huang, P.-S. Sparks of function by de novo protein design. Nat. Biotechnol. 42, 203–215 (2024).Article  MATH  Google Scholar Arnold, F. H. Design by directed evolution. Acc. Chem. Res. 31, 125–131 (1998).Article  MATH  Google Scholar Arnold, F. H. Directed evolution: bringing new chemistry to life. Angew. Chem. Int. Ed. 57, 4143–4148 (2018).Article  MATH  Google Scholar Wang, Y. et al. Directed evolution: methodologies and applications. Chem. Rev. 121, 12384–12444 (2021).Article  Google Scholar Zeymer, C. & Hilvert, D. Directed evolution of protein catalysts. Annu. Rev. Biochem. 87, 131–157 (2018).Article  Google Scholar Korendovych, I. V. & DeGrado, W. F. De novo protein design, a retrospective. Q. Rev. Biophys. 53, e3 (2020).Article  MATH  Google Scholar Pan, X. & Kortemme, T. Recent advances in de novo protein design: principles, methods, and applications. J. Biol. Chem. 296, 100558 (2021).Article  Google Scholar Chen, K. & Arnold, F. H. Engineering new catalytic activities in enzymes. Nat. Catal. 3, 203–213 (2020).Article  MATH  Google Scholar Suleyman, M. & Bhaskar, M. The Coming Wave: Technology, Power, and the Twenty-first Century’s Greatest Dilemma (Crown, 2023).Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).Article  ADS  MATH  Google Scholar Tunyasuvunakool, K. et al. Highly accurate protein structure prediction for the human proteome. Nature 596, 590–596 (2021).Article  ADS  MATH  Google Scholar Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods 19, 679–682 (2022).Article  MATH  Google Scholar Baek, M. et al. Efficient and accurate prediction of protein structure using RoseTTAFold2. Preprint at bioRxiv https://doi.org/10.1101/2023.05.24.542179 (2023).Lin, Z. et al. Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 379, 1123–1130 (2023).Article  ADS  MathSciNet  MATH  Google Scholar Chai, C. D. et al. Chai-1: decoding the molecular interactions of life. Preprint at bioRxiv https://doi.org/10.1101/2024.10.10.615955 (2024).Wohlwend, J. et al. Boltz-1 democratizing biomolecular interaction modeling. Preprint at bioRxiv https://doi.org/10.1101/2024.11.19.624167 (2024).Wu, R. et al. High-resolution de novo structure prediction from primary sequence. Preprint at bioRxiv https://doi.org/10.1101/2022.07.21.500999 (2022).Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).Article  ADS  MATH  Google Scholar Weijman, J. F. et al. Molecular architecture of the autoinhibited kinesin-1 lambda particle. Sci. Adv. 8, eabp9660 (2022).Article  Google Scholar Schweke, H. et al. An atlas of protein homo-oligomerization across domains of life. Cell 187, 999–1010.e15 (2024).Article  Google Scholar Shor, B. & Schneidman-Duhovny, D. CombFold: predicting structures of large protein assemblies using a combinatorial assembly algorithm and AlphaFold2. Nat. Methods 21, 477–487 (2024).Article  Google Scholar Krishna, R. et al. Generalized biomolecular modeling and design with RoseTTAFold All-Atom. Science 384, eadl2528 (2024).Article  MATH  Google Scholar Albanese, K. I. et al. Rationally seeded computational protein design of α-helical barrels. Nat. Chem. Biol. 20, 991–999 (2024).Article  MATH  Google Scholar Watson, J. L. et al. De novo design of protein structure and function with RFdiffusion. Nature 620, 1089–1100 (2023).Article  ADS  MATH  Google Scholar Dauparas, J. et al. Robust deep learning-based protein sequence design using ProteinMPNN. Science 378, 49–56 (2022).Article  ADS  Google Scholar Hsu, C. et al. Learning inverse folding from millions of predicted structures. In Proc. 39th International Conference on Machine Learning Vol. 162 (eds Chaudhuri, K. et al.) 8946–8970 (PMLR, 2022).Akpinaroglu, D. et al. Structure-conditioned masked language models for protein sequence design generalize beyond the native sequence space. Preprint at bioRxiv https://doi.org/10.1101/2023.12.15.571823 (2023).Gao, Z., Tan, C. & Li, S. Z. PiFold: toward effective and efficient protein inverse folding. In The Eleventh International Conference on Learning Representations, ICLR 2023 https://openreview.net/pdf?id=oMsN9TYwJ0j (OpenReview.net, 2023).Ingraham, J. B. et al. Illuminating protein space with a programmable generative model. Nature 623, 1070–1078 (2023).Article  ADS  MATH  Google Scholar Ferruz, N., Schmidt, S. & Höcker, B. ProtGPT2 is a deep unsupervised language model for protein design. Nat. Commun. 13, 4348 (2022).Article  ADS  Google Scholar Hayes, T. et al. Simulating 500 million years of evolution with a language model. Science https://doi.org/10.1126/science.ads0018 (2024).Sumida, K. H. et al. Improving protein expression, stability, and function with ProteinMPNN. J. Am. Chem. Soc. 146, 2054–2061 (2024).Article  MATH  Google Scholar Meador, K. et al. A suite of designed protein cages using machine learning and protein fragment-based protocols. Structure 32, 751–765.e11 (2024).Article  MATH  Google Scholar de Haas, R. J. et al. Rapid and automated design of two-component protein nanomaterials using ProteinMPNN. Proc. Natl Acad. Sci. USA 121, e2314646121 (2024).Article  MATH  Google Scholar Ma, B. et al. A top-down design approach for generating a peptide PROTAC drug targeting androgen receptor for androgenetic alopecia therapy. J. Med. Chem. 67, 10336–10349 (2024).Article  MATH  Google Scholar An, L. et al. Binding and sensing diverse small molecules using shape-complementary pseudocycles. Science 385, 276–282 (2024).Article  MATH  Google Scholar Winnifrith, A., Outeiral, C. & Hie, B. L. Generative artificial intelligence for de novo protein design. Curr. Opin. Struct. Biol. 86, 102794 (2024).Article  Google Scholar Carlini, N. et al. Extracting training data from diffusion models. In 32nd USENIX Security Symposium (eds Calandrino, J. A. & Troncoso, C.) 5253–5270 (USENIX Association, 2023).Yang, K. K., Wu, Z. & Arnold, F. H. Machine-learning-guided directed evolution for protein engineering. Nat. Methods 16, 687–694 (2019).Article  MATH  Google Scholar Pierce, B. G. et al. ZDOCK server: interactive docking prediction of protein–protein complexes and symmetric multimers. Bioinformatics 30, 1771–1773 (2014).Article  MATH  Google Scholar Goverde, C. A., Wolf, B., Khakzad, H., Rosset, S. & Correia, B. E. De novo protein design by inversion of the AlphaFold structure prediction network. Protein Sci. 32, e4653 (2023).Article  Google Scholar Anfinsen, C. B. Principles that govern the folding of protein chains. Science 181, 223–230 (1973).Article  ADS  MATH  Google Scholar Vanommeslaeghe, K. et al. CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem. 31, 671–690 (2010).Article  Google Scholar Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A. & Case, D. A. Development and testing of a general amber force field. J. Comput. Chem. 25, 1157–1174 (2004).Article  MATH  Google Scholar Lazaridis, T. & Karplus, M. Effective energy function for proteins in solution. Proteins 35, 133–152 (1999).Article  MATH  Google Scholar Berman, H. M. et al. The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000).Article  ADS  MATH  Google Scholar Alford, R. F. et al. The Rosetta All-atom energy function for macromolecular modeling and design. J. Chem. Theory Comput. 13, 3031–3048 (2017).Article  MATH  Google Scholar UniProt Consortium. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 49, D480–D489 (2021).Article  Google Scholar Morcos, F. et al. Direct-coupling analysis of residue coevolution captures native contacts across many protein families. Proc. Natl Acad. Sci. USA 108, E1293–E1301 (2011).Article  MATH  Google Scholar wwPDB consortium. Protein Data Bank: the single global archive for 3D macromolecular structure data. Nucleic Acids Res. 47, D520–D528 (2019).Article  Google Scholar Defresne, M., Barbe, S. & Schiex, T. Scalable coupling of deep learning with logical reasoning. In Proc. Thirty-Second International Joint Conference on Artificial Intelligence (ed. Elkind, E.) 3615–3623 (International Joint Conferences on Artificial Intelligence Organization, 2023).Tsuboyama, K. et al. Mega-scale experimental analysis of protein folding stability in biology and design. Nature 620, 434–444 (2023).Article  ADS  MATH  Google Scholar Lu, L. et al. De novo design of drug-binding proteins with predictable binding energy and specificity. Science 384, 106–112 (2024).Article  ADS  MATH  Google Scholar Glasscock, C. J. et al. Computational design of sequence-specific DNA-binding proteins. Preprint at bioRxiv https://doi.org/10.1101/2023.09.20.558720 (2023).Vázquez Torres, S. et al. De novo design of high-affinity binders of bioactive helical peptides. Nature 626, 435–442 (2024).Article  ADS  MATH  Google Scholar Yang, E. C. et al. Computational design of non-porous pH-responsive antibody nanoparticles. Nat. Struct. Mol. Biol. 31, 1404–1412 (2024).Article  MATH  Google Scholar Guo, A. B., Akpinaroglu, D., Kelly, M. J. S. & Kortemme, T. Deep learning guided design of dynamic proteins. Preprint at bioRxiv https://doi.org/10.1101/2024.07.17.603962 (2024).Cross, J. A. et al. A de novo designed coiled coil-based switch regulates the microtubule motor kinesin-1. Nat. Chem. Biol. 20, 916–923 (2024).Article  MATH  Google Scholar Dou, J. et al. De novo design of a fluorescence-activating β-barrel. Nature 561, 485–491 (2018).Article  ADS  MATH  Google Scholar Cao, L. et al. De novo design of picomolar SARS-CoV-2 miniprotein inhibitors. Science 370, 426–431 (2020).Article  ADS  MATH  Google Scholar Sesterhenn, F. et al. De novo protein design enables the precise induction of RSV-neutralizing antibodies. Science 368, eaay5051 (2020).Article  MATH  Google Scholar Bennett, N. R. et al. Atomically accurate de novo design of single-domain antibodies. Preprint at bioRxiv https://doi.org/10.1101/2024.03.14.585103 (2024).Kajava, A. V. Tandem repeats in proteins: from sequence to structure. J. Struct. Biol. 179, 279–288 (2012).Article  Google Scholar Lupas, A. N. & Gruber, M. in Fibrous Proteins: Coiled-Coils, Collagen and Elastomers, Advances in Protein Chemistry 37–38 (Elsevier, 2005).Woolfson, D. N. Understanding a protein fold: the physics, chemistry, and biology of α-helical coiled coils. J. Biol. Chem. 299, 104579 (2023).Article  MATH  Google Scholar Harbury, P. B., Plecs, J. J., Tidor, B., Alber, T. & Kim, P. S. High-resolution protein design with backbone freedom. Science 282, 1462–1467 (1998).Article  Google Scholar Huang, P.-S. et al. High thermodynamic stability of parametrically designed helical bundles. Science 346, 481–485 (2014).Article  ADS  MATH  Google Scholar Thomson, A. R. et al. Computational design of water-soluble α-helical barrels. Science 346, 485–488 (2014).Article  ADS  MATH  Google Scholar Dawson, W. M. et al. Coiled coils 9-to-5: rational de novo design of α-helical barrels with tunable oligomeric states. Chem. Sci. 12, 6923–6928 (2021).Article  MATH  Google Scholar Toda, M., Zhang, F. & Athukorallage, B. Elastic surface model for beta-barrels: geometric, computational, and statistical analysis. Proteins 86, 35–42 (2018).Article  MATH  Google Scholar Novotný, J., Bruccoleri, R. E. & Newell, J. Twisted hyperboloid (strophoid) as a model of β-barrels in proteins. J. Mol. Biol. 177, 567–573 (1984).Article  Google Scholar Naveed, H., Xu, Y., Jackups, R. Jr. & Liang, J. Predicting three-dimensional structures of transmembrane domains of β-barrel membrane proteins. J. Am. Chem. Soc. 134, 1775–1781 (2012).Article  Google Scholar Huang, P.-S. et al. De novo design of a four-fold symmetric TIM-barrel protein with atomic-level accuracy. Nat. Chem. Biol. 12, 29–34 (2016).Article  ADS  MATH  Google Scholar Marcos, E. et al. Principles for designing proteins with cavities formed by curved β sheets. Science 355, 201–206 (2017).Article  ADS  MATH  Google Scholar Kim, D. E. et al. Parametrically guided design of beta barrels and transmembrane nanopores using deep learning. Preprint at bioRxiv https://doi.org/10.1101/2024.07.22.604663 (2024).Lasters, I., Wodak, S. J., Alard, P. & van Cutsem, E. Structural principles of parallel beta-barrels in proteins. Proc. Natl Acad. Sci. USA 85, 3338–3342 (1988).Article  ADS  MATH  Google Scholar Kumar, P., Paterson, N. G., Clayden, J. & Woolfson, D. N. De novo design of discrete, stable 310-helix peptide assemblies. Nature 607, 387–392 (2022).Article  ADS  Google Scholar Durairaj, J. et al. Uncovering new families and folds in the natural protein universe. Nature 622, 646–653 (2023).Article  ADS  MATH  Google Scholar Kuhlman, B. et al. Design of a novel globular protein fold with atomic-level accuracy. Science 302, 1364–1368 (2003).Article  ADS  MATH  Google Scholar Huang, P.-S. et al. RosettaRemodel: a generalized framework for flexible backbone protein design. PLoS ONE 6, e24109 (2011).Article  ADS  Google Scholar Koga, N. et al. Principles for designing ideal protein structures. Nature 491, 222–227 (2012).Article  ADS  MATH  Google Scholar Lin, Y.-R. et al. Control over overall shape and size in de novo designed proteins. Proc. Natl Acad. Sci. USA 112, E5478–85 (2015).Article  Google Scholar Jacobs, T. M. et al. Design of structurally distinct proteins using strategies inspired by evolution. Science 352, 687–690 (2016).Article  ADS  MATH  Google Scholar Pan, X. et al. Expanding the space of protein geometries by computational design of de novo fold families. Science 369, 1132–1136 (2020).Article  ADS  MATH  Google Scholar Harteveld, Z. et al. A generic framework for hierarchical de novo protein design. Proc. Natl Acad. Sci. USA 119, e2206111119 (2022).Article  Google Scholar Yang, C. et al. Bottom-up de novo design of functional proteins with complex structural features. Nat. Chem. Biol. 17, 492–500 (2021).Article  MATH  Google Scholar Zhou, J. & Grigoryan, G. Rapid search for tertiary fragments reveals protein sequence–structure relationships. Protein Sci. 24, 508–524 (2015).Article  MATH  Google Scholar Woolfson, D. N. et al. De novo protein design: how do we expand into the universe of possible protein structures? Curr. Opin. Struct. Biol. 33, 16–26 (2015).Article  MATH  Google Scholar Taylor, W. R. A ’periodic table’ for protein structures. Nature 416, 657–660 (2002).Article  ADS  MATH  Google Scholar Taylor, W. R., Chelliah, V., Hollup, S. M., MacDonald, J. T. & Jonassen, I. Probing the ‘dark matter’ of protein fold space. Structure 17, 1244–1252 (2009).Article  MATH  Google Scholar Minami, S. et al. Exploration of novel αβ-protein folds through de novo design. Nat. Struct. Mol. Biol. 30, 1132–1140 (2023).Article  MATH  Google Scholar Sakuma, K. et al. Design of complicated all-α protein structures. Nat. Struct. Mol. Biol. 31, 275–282 (2024).Article  MATH  Google Scholar Lipsh-Sokolik, R. et al. Combinatorial assembly and design of enzymes. Science 379, 195–201 (2023).Article  ADS  MATH  Google Scholar Kundert, K. & Kortemme, T. Computational design of structured loops for new protein functions. Biol. Chem. 400, 275–288 (2019).Article  MATH  Google Scholar Du, H. et al. A general platform for targeting MHC-II antigens via a single loop. Preprint at bioRxiv https://doi.org/10.1101/2024.01.26.577489 (2024).Misson Mindrebo, L. et al. Fully synthetic platform to rapidly generate tetravalent bispecific nanobody-based immunoglobulins. Proc. Natl Acad. Sci. USA 120, e2216612120 (2023).Article  Google Scholar Yu, Y. & Lutz, S. Circular permutation: a different way to engineer enzyme structure and function. Trends Biotechnol. 29, 18–25 (2011).Article  MATH  Google Scholar Schellman, C. & Jaenicke, R. in The AlphaL Conformation at the Ends of Helices (ed. Jaenicke, R.) (Elsevier, 1980).Thornton, J. M., Sibanda, B. L., Edwards, M. S. & Barlow, D. J. Analysis, design and modification of loop regions in proteins. Bioessays 8, 63–69 (1988).Article  MATH  Google Scholar Aurora, R. & Rose, G. D. Helix capping. Protein Sci. 7, 21–38 (1998).Article  MATH  Google Scholar Richardson, J. S. & Richardson, D. C. Amino acid preferences for specific locations at the ends of alpha helices. Science 240, 1648–1652 (1988).Article  ADS  MATH  Google Scholar Wilmot, C. M. & Thornton, J. M. Analysis and prediction of the different types of β-turn in proteins. J. Mol. Biol. 203, 221–232 (1988).Article  MATH  Google Scholar Brunet, A. P. et al. The role of turns in the structure of an alpha-helical protein. Nature 364, 355–358 (1993).Article  ADS  MATH  Google Scholar Efimov, A. V. Patterns of loop regions in proteins. Curr. Opin. Struct. Biol. 3, 379–384 (1993).Article  MATH  Google Scholar Aurora, R., Srinivasan, R. & Rose, G. D. Rules for alpha-helix termination by glycine. Science 264, 1126–1130 (1994).Article  ADS  MATH  Google Scholar Harper, E. T. & Rose, G. D. Helix stop signals in proteins and peptides: the capping box. Biochemistry 32, 7605–7609 (1993).Article  MATH  Google Scholar Engel, D. E. & DeGrado, W. F. Alpha-alpha linking motifs and interhelical orientations. Proteins 61, 325–337 (2005).Article  MATH  Google Scholar Hill, R. B., Raleigh, D. P., Lombardi, A. & DeGrado, W. F. De novo design of helical bundles as models for understanding protein folding and function. Acc. Chem. Res. 33, 745–754 (2000).Article  MATH  Google Scholar Canutescu, A. A. & Dunbrack, R. L. Jr. Cyclic coordinate descent: a robotics algorithm for protein loop closure. Protein Sci. 12, 963–972 (2003).Article  Google Scholar Cortés, J., Siméon, T., Remaud-Siméon, M. & Tran, V. Geometric algorithms for the conformational analysis of long protein loops. J. Comput. Chem. 25, 956–967 (2004).Article  MATH  Google Scholar Barozet, A., Chacón, P. & Cortés, J. Current approaches to flexible loop modeling. Curr. Res. Struct. Biol. 3, 187–191 (2021).Article  MATH  Google Scholar Mandell, D. J., Coutsias, E. A. & Kortemme, T. Sub-angstrom accuracy in protein loop reconstruction by robotics-inspired conformational sampling. Nat. Methods 6, 551–552 (2009).Article  Google Scholar Barozet, A. et al. MoMA-LoopSampler: a web server to exhaustively sample protein loop conformations. Bioinformatics 38, 552–553 (2022).Article  Google Scholar Jiang, H. et al. De novo design of buttressed loops for sculpting protein functions. Nat. Chem. Biol. 20, 974–980 (2024).Article  MATH  Google Scholar Aguilar Rangel, M. et al. Fragment-based computational design of antibodies targeting structured epitopes. Sci. Adv. 8, eabp9540 (2022).Article  Google Scholar Mann, S. I., Nayak, A., Gassner, G. T., Therien, M. J. & DeGrado, W. F. De novo design, solution characterization, and crystallographic structure of an abiological Mn-porphyrin-binding protein capable of stabilizing a Mn(V) species. J. Am. Chem. Soc. 143, 252–259 (2021).Article  Google Scholar Anishchenko, I. et al. De novo protein design by deep network hallucination. Nature 600, 547–552 (2021).Article  ADS  MATH  Google Scholar Wang, J. et al. Scaffolding protein functional sites using deep learning. Science 377, 387–394 (2022).Article  ADS  MATH  Google Scholar Szegedy, C. et al. Going deeper with convolutions. In Proc. 2015 IEEE Conf. Computer Vision and Pattern Recognition (IEEE, 2015).Yeh, A. H.-W. et al. De novo design of luciferases using deep learning. Nature 614, 774–780 (2023).Article  ADS  MATH  Google Scholar Wicky, B. I. M. et al. Hallucinating symmetric protein assemblies. Science 378, 56–61 (2022).Article  ADS  Google Scholar Frank, C. et al. Scalable protein design using optimization in a relaxed sequence space. Science 386, 439–445 (2024).Article  MATH  Google Scholar Frank, C., Schiwietz, D., Fuß, L., Ovchinnikov, S. & Dietz, H. Alphafold2 refinement improves designability of large de novo proteins. Preprint at bioRxiv https://doi.org/10.1101/2024.11.21.624687 (2024).Ho, J., Jain, A. & Abbeel, P. Denoising diffusion probabilistic models. In Advances in Neural Information Processing Systems 33 (eds Larochelle, H. et al.) (NeurIPS, 2020).Song, Y. et al. Score-based generative modeling through stochastic differential equations. In 9th International Conference on Learning Representations, ICLR 2021 https://openreview.net/forum?id=PxTIG12RRHS (OpenReview.net, 2021).Lin, Y., Lee, M., Zhang, Z. & AlQuraishi, M. Out of many, one: designing and scaffolding proteins at the scale of the structural universe with Genie 2. Preprint at https://arxiv.org/abs/2405.15489 (2024).Yim, J. et al. SE(3) diffusion model with application to protein backbone generation. In Proc. Mahine Learning Research https://proceedings.mlr.press/v202/yim23a.html (OpenReview.net, 2023).Yim, J. et al. Fast protein backbone generation with SE(3) flow matching. Preprint at https://arxiv.org/abs/2310.05297 (2023).Wang, C. et al. Proteus: exploring protein structure generation for enhanced designability and efficiency. In Proc. 41st International Conference on Machine Learning https://openreview.net/forum?id=IckJCzsGVS (OpenReview.net, 2024).Huguet, G. et al. Sequence-augmented SE(3)-flow matching for conditional protein backbone generation. In Thirty-Eighth Annual Conference on Neural Information Processing Systems https://openreview.net/forum?id=paYwtPBpyZ (OpenReview.net, 2024).Campbell, A., Yim, J., Barzilay, R., Rainforth, T. & Jaakkola, T. S. Generative flows on discrete state-spaces: enabling multimodal flows with applications to protein co-design. In Proc. Forty-first International Conference on Machine Learning https://openreview.net/forum?id=kQwSbv0BR4 (OpenReview.net, 2024).Ren, M., Zhu, T. & Zhang, H. CarbonNovo: joint design of protein structure and sequence using a unified energy-based model. In Forty-first International Conference on Machine Learning, ICML 2024 https://openreview.net/forum?id=FSxTEvuFa7 (OpenReview.net, 2024).Chu, A. E. et al. An all-atom protein generative model. Proc. Natl Acad. Sci. USA 121, e2311500121 (2024).Article  MATH  Google Scholar Lisanza, S. L. et al. Multistate and functional protein design using RoseTTAFold sequence space diffusion. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02395-w (2024).Qu, W. et al. P(all-atom) is unlocking new path for protein design. Preprint at bioRxiv https://doi.org/10.1101/2024.08.16.608235 (2024).Dahiyat, B. I., Sarisky, C. A. & Mayo, S. L. De novo protein design: towards fully automated sequence selection. J. Mol. Biol. 273, 789–796 (1997).Article  Google Scholar Lovell, S. C., Word, J. M., Richardson, J. S. & Richardson, D. C. The penultimate rotamer library. Proteins 40, 389–408 (2000).Article  MATH  Google Scholar Shapovalov, M. V. & Dunbrack, R. L. Jr. A smoothed backbone-dependent rotamer library for proteins derived from adaptive kernel density estimates and regressions. Structure 19, 844–858 (2011).Article  Google Scholar Cooper, M. C., de Givry, S. & Schiex, T. Graphical models: queries, complexity, algorithms. In Proc. 37th International Symposium on Theoretical Aspects of Computer Science Vol. 154 (STACS 2020) (eds Paul, C. & Bläser, M.) 4:1–4:22 (Schloss Dagstuhl — Leibniz-Zentrum für Informatik, 2020).Hallen, M. A. et al. OSPREY 3.0: open-source protein redesign for you, with powerful new features. J. Comput. Chem. 39, 2494–2507 (2018).Article  MATH  Google Scholar Hallen, M. A. & Donald, B. R. Protein design by provable algorithms. Commun. ACM 62, 76–84 (2019).Article  MATH  Google Scholar Allouche, D. et al. Computational protein design as an optimization problem. Artif. Intell. 212, 59–79 (2014).Article  MathSciNet  MATH  Google Scholar Pierce, N. A. & Winfree, E. Protein design is NP-hard. Protein Eng. 15, 779–782 (2002).Article  MATH  Google Scholar Simoncini, D. et al. Guaranteed discrete energy optimization on large protein design problems. J. Chem. Theory Comput. 11, 5980–5989 (2015).Article  MATH  Google Scholar Khatri, B., Majumder, P., Nagesh, J., Penmatsa, A. & Chatterjee, J. Increasing protein stability by engineering the n → π* interaction at the β-turn. Chem. Sci. 11, 9480–9487 (2020).Article  Google Scholar Boyken, S. E. et al. De novo design of protein homo-oligomers with modular hydrogen-bond network-mediated specificity. Science 352, 680–687 (2016).Article  ADS  Google Scholar Pavlovicz, R. E., Park, H. & DiMaio, F. Efficient consideration of coordinated water molecules improves computational protein–protein and protein–ligand docking discrimination. PLoS Comput. Biol. 16, e1008103 (2020).Article  ADS  Google Scholar Ruffini, M. et al. Guaranteed diversity and optimality in cost function network based computational protein design methods. Algorithms 14, 168 (2021).Article  MATH  Google Scholar Colom, M. S. et al. Complete combinatorial mutational enumeration of a protein functional site enables sequence–landscape mapping and identifies highly-mutated variants that retain activity. Protein Sci. 33, e5109 (2024).Article  Google Scholar DiMaio, F., Leaver-Fay, A., Bradley, P., Baker, D. & André, I. Modeling symmetric macromolecular structures in Rosetta3. PLoS ONE 6, e20450 (2011).Article  ADS  Google Scholar Defresne, M., Barbe, S. & Schiex, T. Protein design with deep learning. Int. J. Mol. Sci. 22, 11741 (2021).Article  MATH  Google Scholar Goverde, C. A. et al. Computational design of soluble and functional membrane protein analogues. Nature 631, 449–458 (2024).Article  MATH  Google Scholar Jing, B., Eismann, S., Suriana, P., Townshend, R. J. L. & Dror, R. O. Learning from protein structure with geometric vector perceptrons. In 9th International Conference on Learning Representations, ICLR 2021 https://openreview.net/forum?id=1YLJDvSx6J4 (OpenReview.net, 2021).Young, G. & Householder, A. S. Discussion of a set of points in terms of their mutual distances. Psychometrika 3, 19–22 (1938).Article  MATH  Google Scholar Corso, G., Stark, H., Jegelka, S., Jaakkola, T. & Barzilay, R. Graph neural networks. Nat. Rev. Methods Primers 4, 17 (2024).Article  MATH  Google Scholar Krapp, L. F., Meireles, F. A., Abriata, L. A. & Peraro, M. D. Context-aware geometric deep learning for protein sequence design. Nat. Commun. 15, 6273 (2024).Article  MATH  Google Scholar Dessaux, D. et al. Designing symmetrical multi-component proteins using a hybrid generative AI approach. Preprint at bioRxiv https://doi.org/10.1101/2024.06.13.598662 (2024).Li, A. J. et al. Neural network-derived Potts models for structure-based protein design using backbone atomic coordinates and tertiary motifs. Protein Sci. 32, e4554 (2023).Article  ADS  Google Scholar Silva, L. A., Meynard-Piganeau, B., Lucibello, C. & Feinauer, C. Uncovering sequence diversity from a known protein structure. Preprint at https://arxiv.org/abs/2406.11975 (2024).Durante, V., Katsirelos, G. & Schiex, T. Efficient low rank convex bounds for pairwise discrete graphical models. In Proc. Machine Learning Research Vol. 162 (eds Chaudhuri, K.) 5726–5741 (PMLR, 2022).Liu, Y. et al. Rotamer-free protein sequence design based on deep learning and self-consistency. Nat. Comput. Sci. 2, 451–462 (2022).Article  MATH  Google Scholar Liu, J., Guo, Z., You, H., Zhang, C. & Lai, L. All-atom protein sequence design based on geometric deep learning. Angew. Chem. Int. Ed. 63, e202411461 (2024).Article  Google Scholar Dauparas, J. et al. Atomic context-conditioned protein sequence design using LigandMPNN. Preprint at bioRxiv https://doi.org/10.1101/2023.12.22.573103 (2023).Krapp, L. F. et al. Context-aware geometric deep learning for protein sequence design. Nat. Commun. 15, 6273 (2024).Article  MATH  Google Scholar Baldwin, E., Hajiseyedjavadi, O., Baase, W. & Matthews, B. The role of backbone flexibility in the accommodation of variants that repack the core of T4 lysozyme. Science 262, 1715–1718 (1993).Article  ADS  Google Scholar Bordner, A. & Abagyan, R. Large-scale prediction of protein geometry and stability changes for arbitrary single point mutations. Proteins Struct. Funct. Bioinf. 57, 400–413 (2004).Article  MATH  Google Scholar Boehr, D. D., Nussinov, R. & Wright, P. E. The role of dynamic conformational ensembles in biomolecular recognition. Nat. Chem. Biol. 5, 789–796 (2009).Article  MATH  Google Scholar Sonaglioni, D. et al. Dynamic personality of proteins and effect of the molecular environment. J. Phys. Chem. Lett. 15, 5543–5548 (2024).Article  MATH  Google Scholar Gaillard, T., Panel, N. & Simonson, T. Protein side chain conformation predictions with an MMGBSA energy function. Proteins Struct. Funct. Bioinf. 84, 803–819 (2016).Article  Google Scholar Murphy, G. S. et al. Increasing sequence diversity with flexible backbone protein design: the complete redesign of a protein hydrophobic core. Structure 20, 1086–1096 (2012).Article  MATH  Google Scholar Khatib, F. et al. Algorithm discovery by protein folding game players. Proc. Natl Acad. Sci. USA 108, 18949–18953 (2011).Article  ADS  MATH  Google Scholar Tyka, M. D. et al. Alternate states of proteins revealed by detailed energy landscape mapping. J. Mol. Biol. 405, 607–618 (2011).Article  MATH  Google Scholar Loshbaugh, A. L. & Kortemme, T. Comparison of Rosetta flexible-backbone computational protein design methods on binding interactions. Proteins Struct. Funct. Bioinf. 88, 206–226 (2020).Article  Google Scholar Ollikainen, N., de Jong, R. M. & Kortemme, T. Coupling protein side-chain and backbone flexibility improves the re-design of protein–ligand specificity. PLoS Comput. Biol. 11, e1004335 (2015).Article  Google Scholar Smith, C. A. & Kortemme, T. Backrub-like backbone simulation recapitulates natural protein conformational variability and improves mutant side-chain prediction. J. Mol. Biol. 380, 742–756 (2008).Article  MATH  Google Scholar Sun, M. G. & Kim, P. M. Data driven flexible backbone protein design. PLoS Comput. Biol. 13, e1005722 (2017).Article  ADS  Google Scholar Simoncini, D., Zhang, K. Y., Schiex, T. & Barbe, S. A structural homology approach for computational protein design with flexible backbone. Bioinformatics 35, 2418–2426 (2019).Article  MATH  Google Scholar Gainza, P., Roberts, K. E. & Donald, B. R. Protein design using continuous rotamers. PLoS Comput. Biol. 8, e1002335 (2012).Article  ADS  Google Scholar Hallen, M. A., Keedy, D. A. & Donald, B. R. Dead-end elimination with perturbations (deeper): a provable protein design algorithm with continuous sidechain and backbone flexibility. Proteins Struct. Funct. Bioinf. 81, 18–39 (2013).Article  Google Scholar Hallen, M. A. & Donald, B. R. Cats (coordinates of atoms by Taylor series): protein design with backbone flexibility in all locally feasible directions. Bioinformatics 33, i5–i12 (2017).Article  MATH  Google Scholar Zuckerman, D. M. Statistical Physics of Biomolecules: An Introduction (CRC Press, 2010).Jou, J. D., Holt, G. T., Lowegard, A. U. & Donald, B. R. Minimization-aware recursive k*: a novel, provable algorithm that accelerates ensemble-based protein design and provably approximates the energy landscape. J. Comput. Biol. 27, 550–564 (2020).Article  MathSciNet  MATH  Google Scholar Viricel, C., de Givry, S., Schiex, T. & Barbe, S. Cost function network-based design of protein–protein interactions: predicting changes in binding affinity. Bioinformatics 34, 2581–2589 (2018).Article  MATH  Google Scholar Ojewole, A. A., Jou, J. D., Fowler, V. G. & Donald, B. R. Bbk*(branch and bound over k*): a provable and efficient ensemble-based protein design algorithm to optimize stability and binding affinity over large sequence spaces. J. Comput. Biol. 25, 726–739 (2018).Article  MathSciNet  Google Scholar Silver, N. W. et al. Efficient computation of small-molecule configurational binding entropy and free energy changes by ensemble enumeration. J. Chem. Theory Comput. 9, 5098–5115 (2013).Article  MATH  Google Scholar Kamisetty, H., Ramanathan, A., Bailey-Kellogg, C. & Langmead, C. J. Accounting for conformational entropy in predicting binding free energies of protein–protein interactions. Proteins Struct. Funct. Bioinf. 79, 444–462 (2011).Article  Google Scholar Valiant, L. G. The complexity of enumeration and reliability problems. SIAM J. Comput. 8, 410–421 (1979).Article  MathSciNet  MATH  Google Scholar Nisonoff, H. Efficient Partition Function Estimation in Computational Protein Design: Probabilistic Guarantees and Characterization of a Novel Algorithm. PhD thesis, Duke University, Durham (2015).Viricel, C., Simoncini, D., Barbe, S. & Schiex, T. Guaranteed weighted counting for affinity computation: beyond determinism and structure. In Principles and Practice of Constraint Programming: 22nd International Conference, CP 2016, Toulouse, France, September 5–9, 2016, Proceedings Vol. 22, 733–750 (Springer, 2016).Havranek, J. J. & Harbury, P. B. Automated design of specificity in molecular recognition. Nat. Struct. Biol. 10, 45–52 (2003).Article  MATH  Google Scholar Desjarlais, J. R. & Handel, T. M. Side-chain and backbone flexibility in protein core design. J. Mol. Biol. 290, 305–318 (1999).Article  MATH  Google Scholar Hu, X., Wang, H., Ke, H. & Kuhlman, B. High-resolution design of a protein loop. Proc. Natl Acad. Sci. USA 104, 17668–17673 (2007).Article  ADS  MATH  Google Scholar Murphy, P. M., Bolduc, J. M., Gallaher, J. L., Stoddard, B. L. & Baker, D. Alteration of enzyme specificity by computational loop remodeling and design. Proc. Natl Acad. Sci. USA 106, 9215–9220 (2009).Article  ADS  Google Scholar Davis, I. W., Arendall, W. B., Richardson, D. C. & Richardson, J. S. The backrub motion: how protein backbone shrugs when a sidechain dances. Structure 14, 265–274 (2006).Article  MATH  Google Scholar Friedland, G. D., Linares, A. J., Smith, C. A. & Kortemme, T. A simple model of backbone flexibility improves modeling of side-chain conformational variability. J. Mol. Biol. 380, 757–774 (2008).Article  Google Scholar Ollikainen, N., Smith, C. A., Fraser, J. S. & Kortemme, T. in Methods in Enzymology Vol. 523, 61–85 (Elsevier, 2013).Fu, X., Apgar, J. R. & Keating, A. E. Modeling backbone flexibility to achieve sequence diversity: the design of novel α-helical ligands for Bcl-xL. J. Mol. Biol. 371, 1099–1117 (2007).Article  Google Scholar Fung, H. K., Floudas, C. A., Taylor, M. S., Zhang, L. & Morikis, D. Toward full-sequence de novo protein design with flexible templates for human beta-defensin-2. Biophys. J. 94, 584–599 (2008).Article  ADS  MATH  Google Scholar Sala, D., Engelberger, F., Mchaourab, H. & Meiler, J. Modeling conformational states of proteins with AlphaFold. Curr. Opin. Struct. Biol. 81, 102645 (2023).Article  Google Scholar Del Alamo, D., Sala, D., Mchaourab, H. S. & Meiler, J. Sampling alternative conformational states of transporters and receptors with AlphaFold2. eLife 11, e75751 (2022).Article  Google Scholar Wayment-Steele, H. K. et al. Predicting multiple conformations via sequence clustering and AlphaFold2. Nature 625, 832–839 (2024).Article  ADS  MATH  Google Scholar Stein, R. A. & Mchaourab, H. S. SPEACH_AF: sampling protein ensembles and conformational heterogeneity with AlphaFold2. PLoS Comput. Biol. 18, e1010483 (2022).Article  Google Scholar Kalakoti, Y. & Wallner, B. AFsample2: predicting multiple conformations and ensembles with AlphaFold2. Preprint at bioRxiv https://doi.org/10.1101/2024.05.28.596195 (2024).Bryant, P. & Noé, F. Structure prediction of alternative protein conformations. Nat. Commun. 15, 7328 (2024).Article  MATH  Google Scholar Jing, B. et al. Eigenfold: generative protein structure prediction with diffusion models. Preprint at https://arxiv.org/abs/2304.02198 (2023).Zheng, S. et al. Predicting equilibrium distributions for molecular systems with deep learning. Nat. Mach. Intell. 6, 558–567 (2024).Article  MATH  Google Scholar Lu, J., Zhong, B. & Tang, J. Score-based enhanced sampling for protein molecular dynamics. In ICML 2023 Workshop on Structured Probabilistic Inference & Generative Modeling https://openreview.net/forum?id=NO3QwxuHv9#all (2023).Jing, B., Berger, B. & Jaakkola, T. S. AlphaFold meets flow matching for generating protein ensembles. In NeurIPS 2023 Workshop on Generative AI and Biology https://openreview.net/pdf?id=yQcebEgQfH (OpenReview.net, 2024).Albergo, M. S. & Vanden-Eijnden, E. Building normalizing flows with stochastic interpolants. In The Eleventh International Conference on Learning Representations, ICLR 2023 https://openreview.net/forum?id=li7qeBbCR1t (OpenReview.net, 2023).Davey, J. A. & Chica, R. A. Multistate approaches in computational protein design. Protein Sci. 21, 1241–1252 (2012).Article  MATH  Google Scholar Karimi, M. & Shen, Y. iCFN: an efficient exact algorithm for multistate protein design. Bioinformatics 34, i811–i820 (2018).Article  Google Scholar Vucinic, J., Simoncini, D., Ruffini, M., Barbe, S. & Schiex, T. Positive multistate protein design. Bioinformatics 36, 122–130 (2020).Article  Google Scholar Davey, J. A., Damry, A. M., Euler, C. K., Goto, N. K. & Chica, R. A. Prediction of stable globular proteins using negative design with non-native backbone ensembles. Structure 23, 2011–2021 (2015).Article  Google Scholar Davey, J. A. & Chica, R. A. Multistate computational protein design with backbone ensembles. Methods Mol. Biol. 1529, 161–179 (2017).Article  MATH  Google Scholar Sauer, M. F., Sevy, A. M., Crowe, J. E. Jr. & Meiler, J. Multi-state design of flexible proteins predicts sequences optimal for conformational change. PLoS Comput. Biol. 16, e1007339 (2020).Article  ADS  Google Scholar Ambroggio, X. I. & Kuhlman, B. Computational design of a single amino acid sequence that can switch between two distinct protein folds. J. Am. Chem. Soc. 128, 1154–1161 (2006).Article  MATH  Google Scholar Sevy, A. M., Jacobs, T. M., Crowe, J. E. Jr. & Meiler, J. Design of protein multi-specificity using an independent sequence search reduces the barrier to low energy sequences. PLoS Comput. Biol. 11, e1004300 (2015).Article  ADS  Google Scholar Leaver-Fay, A., Jacak, R., Stranges, P. B. & Kuhlman, B. A generic program for multistate protein design. PLoS ONE 6, e20937 (2011).Article  ADS  Google Scholar Allen, B. D. & Mayo, S. L. An efficient algorithm for multistate protein design based on faster. J. Comput. Chem. 31, 904–916 (2010).Article  MATH  Google Scholar Negron, C. & Keating, A. E. in Methods in Enzymology Vol. 523, 171–190 (Elsevier, 2013).Fromer, M., Yanover, C. & Linial, M. Design of multispecific protein sequences using probabilistic graphical modeling. Proteins Struct. Funct. Bioinf. 78, 530–547 (2010).Article  MATH  Google Scholar Fromer, M. et al. SPRINT: side-chain prediction inference toolbox for multistate protein design. Bioinformatics 26, 2466–2467 (2010).Article  MATH  Google Scholar Yanover, C., Fromer, M. & Shifman, J. M. Dead-end elimination for multistate protein design. J. Comput. Chem. 28, 2122–2129 (2007).Article  MATH  Google Scholar Hallen, M. A. & Donald, B. R. COMETS (constrained optimization of multistate energies by tree search): a provable and efficient protein design algorithm to optimize binding affinity and specificity with respect to sequence. J. Comput. Biol. 23, 311–321 (2016).Article  MATH  Google Scholar Traoré, S. et al. Fast search algorithms for computational protein design. J. Comput. Chem. 37, 1048–1058 (2016).Article  MATH  Google Scholar Löffler, P., Schmitz, S., Hupfeld, E., Sterner, R. & Merkl, R. Rosetta: MSF: a modular framework for multi-state computational protein design. PLoS Comput. Biol. 13, e1005600 (2017).Article  ADS  Google Scholar Nazet, J., Lang, E. & Merkl, R. Rosetta:MSF:NN: boosting performance of multi-state computational protein design with a neural network. PLoS ONE 16, e0256691 (2021).Article  Google Scholar Eisenstein, M. Seven technologies to watch in 2022. Nature 601, 658–661 (2022).Article  ADS  MATH  Google Scholar Porebski, B. T. & Buckle, A. M. Consensus protein design. Protein Eng. Des. Sel. 29, 245–251 (2016).Article  MATH  Google Scholar Plückthun, A. Designed ankyrin repeat proteins (DARPins): binding proteins for research, diagnostics, and therapy. Annu. Rev. Pharmacol. Toxicol. 55, 489–511 (2015).Article  Google Scholar Pabo, C. O., Peisach, E. & Grant, R. A. Design and selection of novel Cys2His2 zinc finger proteins. Annu. Rev. Biochem. 70, 313–340 (2001).Article  MATH  Google Scholar Spence, M. A., Kaczmarski, J. A., Saunders, J. W. & Jackson, C. J. Ancestral sequence reconstruction for protein engineers. Curr. Opin. Struct. Biol. 69, 131–141 (2021).Article  MATH  Google Scholar Voet, A. R. D. et al. Computational design of a self-assembling symmetrical β-propeller protein. Proc. Natl Acad. Sci. USA 111, 15102–15107 (2014).Article  ADS  MATH  Google Scholar Reynolds, K. A., Russ, W. P., Socolich, M. & Ranganathan, R. in Methods in Enzymology 213–235 (Elsevier, 2013).Brender, J. R., Shultis, D., Khattak, N. A. & Zhang, Y. An evolution-based approach to DE novo protein design. Methods Mol. Biol. 1529, 243–264 (2017).Article  Google Scholar Russ, W. P. et al. An evolution-based model for designing chorismate mutase enzymes. Science 369, 440–445 (2020).Article  ADS  MathSciNet  MATH  Google Scholar Schmitz, S., Ertelt, M., Merkl, R. & Meiler, J. Rosetta design with co-evolutionary information retains protein function. PLoS Comput. Biol. 17, e1008568 (2021).Article  ADS  Google Scholar Malbranke, C., Bikard, D., Cocco, S., Monasson, R. & Tubiana, J. Machine learning for evolutionary-based and physics-inspired protein design: current and future synergies. Curr. Opin. Struct. Biol. 80, 102571 (2023).Article  MATH  Google Scholar Fram, B. et al. Simultaneous enhancement of multiple functional properties using evolution-informed protein design. Nat. Commun. 15, 5141 (2024).Article  MATH  Google Scholar Verkuil, R. et al. Language models generalize beyond natural proteins. Preprint at bioRxiv https://doi.org/10.1101/2022.12.21.521521 (2022).Madani, A. et al. Large language models generate functional protein sequences across diverse families. Nat. Biotechnol. 41, 1099–1106 (2023).Article  MATH  Google Scholar Munsamy, G. et al. Conditional language models enable the efficient design of proficient enzymes. Preprint at bioRxiv https://doi.org/10.1101/2024.05.03.592223 (2024).Winski, A. et al. AlphaFold2 captures the conformational landscape of the HAMP signaling domain. Protein Sci. 33, e4846 (2024).Article  Google Scholar Akdel, M. et al. A structural biology community assessment of AlphaFold2 applications. Nat. Struct. Mol. Biol. 29, 1056–1067 (2022).Article  MATH  Google Scholar McDonald, E. F., Jones, T., Plate, L., Meiler, J. & Gulsevin, A. Benchmarking AlphaFold2 on peptide structure prediction. Structure 31, 111–119.e2 (2023).Article  Google Scholar Castorina, L. V., Petrenas, R., Subr, K. & Wood, C. W. PDBench: evaluating computational methods for protein-sequence design. Bioinformatics 39, btad027 (2023).Article  Google Scholar Dallago, C. et al. FLIP: benchmark tasks in fitness landscape inference for proteins. In Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2) https://openreview.net/forum?id=p2dMLEwL8tF (OpenReview.net, 2021).Notin, P. et al. ProteinGym: large-scale benchmarks for protein fitness prediction and design. in 37th Conference on Neural Information Processing Systems (NeurIPS 2023) (eds Oh, A. et al.), Vol. 36, 64331–64379 (Curran Associates, Inc., 2023).Zhang, Y. & Skolnick, J. TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Res. 33, 2302–2309 (2005).Article  MATH  Google Scholar Arun, K. S., Huang, T. S. & Blostein, S. D. Least-squares fitting of two 3-D point sets. IEEE Trans. Patt. Anal. Mach. Intell. 9, 698–700 (1987).Article  MATH  Google Scholar Li, S. C., Bu, D., Xu, J. & Li, M. Finding nearly optimal GDT scores. J. Comput. Biol. 18, 693–704 (2011).Article  MathSciNet  MATH  Google Scholar Mariani, V., Biasini, M., Barbato, A. & Schwede, T. lDDT: a local superposition-free score for comparing protein structures and models using distance difference tests. Bioinformatics 29, 2722–2728 (2013).Article  Google Scholar Wallner, B. AFsample: improving multimer prediction with AlphaFold using massive sampling. Bioinformatics 39, btad573 (2023).Article  MATH  Google Scholar Roney, J. P. & Ovchinnikov, S. State-of-the-art estimation of protein model accuracy using AlphaFold. Phys. Rev. Lett. 129, 238101 (2022).Article  ADS  MATH  Google Scholar Bennett, N. R. et al. Improving de novo protein binder design with deep learning. Nat. Commun. 14, 2625 (2023).Article  ADS  MATH  Google Scholar Liu, C. et al. Diffusing protein binders to intrinsically disordered proteins. Preprint at bioRxiv https://doi.org/10.1101/2024.07.16.603789 (2024).Wu, K. et al. Sequence-specific targeting of intrinsically disordered protein regions. Preprint at bioRxiv https://doi.org/10.1101/2024.07.15.603480 (2024).Manfredi, M. et al. Alpha&ESMhFolds: a web server for comparing AlphaFold2 and ESMFold models of the human reference proteome. J. Mol. Biol. 436, 168593 (2024).Article  MATH  Google Scholar Trott, O. & Olson, A. J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461 (2010).Article  MATH  Google Scholar Corso, G., Stärk, H., Jing, B., Barzilay, R. & Jaakkola, T. DiffDock: diffusion steps, twists, and turns for molecular docking. In The Eleventh International Conference on Learning Representations https://openreview.net/forum?id=kKF8_K-mBbS (ICLR 2023).Moretti, R., Bender, B. J., Allison, B. & Meiler, J. Rosetta and the design of ligand binding sites. Methods Mol. Biol. 1414, 47–62 (2016).Article  MATH  Google Scholar Basu, S. & Wallner, B. DockQ: a quality measure for protein–protein docking models. PLoS ONE 11, e0161879 (2016).Article  MATH  Google Scholar Dominguez, C., Boelens, R. & Bonvin, A. M. J. J. HADDOCK: a protein–protein docking approach based on biochemical or biophysical information. J. Am. Chem. Soc. 125, 1731–1737 (2003).Article  Google Scholar Kanitkar, T. R. et al. Methods for molecular modelling of protein complexes. Methods Mol. Biol. 2305, 53–80 (2021).Article  MATH  Google Scholar Radom, F., Plückthun, A. & Paci, E. Assessment of ab initio models of protein complexes by molecular dynamics. PLoS Comput. Biol. 14, e1006182 (2018).Article  ADS  Google Scholar Wang, L. et al. Accurate and reliable prediction of relative ligand binding potency in prospective drug discovery by way of a modern free-energy calculation protocol and force field. J. Am. Chem. Soc. 137, 2695–2703 (2015).Article  MATH  Google Scholar Chipot, C. Free energy methods for the description of molecular processes. Annu. Rev. Biophys. 52, 113–138 (2023).Article  MATH  Google Scholar Barros, E. P. et al. Improving the efficiency of ligand-binding protein design with molecular dynamics simulations. J. Chem. Theory Comput. 15, 5703–5715 (2019).Article  MATH  Google Scholar Chevalier, A. et al. Massively parallel de novo protein design for targeted therapeutics. Nature 550, 74–79 (2017).Article  ADS  MATH  Google Scholar Childers, M. C. & Daggett, V. Insights from molecular dynamics simulations for computational protein design. Mol. Syst. Des. Eng. 2, 9–33 (2017).Article  MATH  Google Scholar Gainza, P. et al. Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning. Nat. Methods 17, 184–192 (2020).Article  Google Scholar Gainza, P. et al. De novo design of protein interactions with learned surface fingerprints. Nature 617, 176–184 (2023).Article  ADS  MATH  Google Scholar Gligorijević, V. et al. Structure-based protein function prediction using graph convolutional networks. Nat. Commun. 12, 3168 (2021).Article  ADS  MATH  Google Scholar Sanderson, T., Bileschi, M. L., Belanger, D. & Colwell, L. J. ProteInfer, deep neural networks for protein functional inference. eLife 12, e80942 (2023).Article  Google Scholar Brandes, N., Ofer, D., Peleg, Y., Rappoport, N. & Linial, M. ProteinBERT: a universal deep-learning model of protein sequence and function. Bioinformatics 38, 2102–2110 (2022).Article  Google Scholar Khersonsky, O. et al. Automated design of efficient and functionally diverse enzyme repertoires. Mol. Cell 72, 178–186.e5 (2018).Article  Google Scholar Weinstein, J. Y. et al. Designed active-site library reveals thousands of functional GFP variants. Nat. Commun. 14, 2890 (2023).Article  ADS  MATH  Google Scholar Kumar, N. & Skolnick, J. EFICAz2.5: application of a high-precision enzyme function predictor to 396 proteomes. Bioinformatics 28, 2687–2688 (2012).Article  MATH  Google Scholar Somarowthu, S., Yang, H., Hildebrand, D. G. C. & Ondrechen, M. J. High-performance prediction of functional residues in proteins with machine learning and computed input features. Biopolymers 95, 390–400 (2011).Article  Google Scholar Somarowthu, S. & Ondrechen, M. J. POOL server: machine learning application for functional site prediction in proteins. Bioinformatics 28, 2078–2079 (2012).Article  MATH  Google Scholar Tong, W., Wei, Y., Murga, L. F., Ondrechen, M. J. & Williams, R. J. Partial order optimum likelihood (POOL): maximum likelihood prediction of protein active site residues using 3D structure and sequence properties. PLoS Comput. Biol. 5, e1000266 (2009).Article  ADS  Google Scholar Song, J. et al. PREvaIL, an integrative approach for inferring catalytic residues using sequence, structural, and network features in a machine-learning framework. J. Theor. Biol. 443, 125–137 (2018).Article  ADS  MATH  Google Scholar Zou, Z., Tian, S., Gao, X. & Li, Y. MlDEEPre: multi-functional enzyme function prediction with hierarchical multi-label deep learning. Front. Genet. 9, 714 (2018).Article  MATH  Google Scholar Feehan, R., Franklin, M. W. & Slusky, J. S. G. Machine learning differentiates enzymatic and non-enzymatic metals in proteins. Nat. Commun. 12, 3712 (2021).Article  ADS  Google Scholar Feehan, R., Copeland, M., Franklin, M. W. & Slusky, J. S. G. MAHOMES II: a webserver for predicting if a metal binding site is enzymatic. Protein Sci. 32, e4626 (2023).Article  Google Scholar van Kempen, M. et al. Fast and accurate protein structure search with Foldseek. Nat. Biotechnol. 42, 243–246 (2024).Article  MATH  Google Scholar Kim, W. et al. Rapid and sensitive protein complex alignment with Foldseek-multimer. Preprint at bioRxiv https://doi.org/10.1101/2024.07.15.603480 (2024).Holm, L. in Methods in Molecular Biology (ed. Clifton, N. J.) 29–42 (Springer US, 2020).Shindyalov, I. N. & Bourne, P. E. Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. Protein Eng. Des. Sel. 11, 739–747 (1998).Article  MATH  Google Scholar Johnson, S. R. et al. Computational scoring and experimental evaluation of enzymes generated by neural networks. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02214-2 (2024).Stam, M. J. & Wood, C. W. DE-STRESS: a user-friendly web application for the evaluation of protein designs. Protein Eng. Des. Sel. 34, gzab029 (2021).Article  MATH  Google Scholar Goldenzweig, A. et al. Automated structure- and sequence-based design of proteins for high bacterial expression and stability. Mol. Cell 63, 337–346 (2016).Article  Google Scholar Marques, S. M., Planas-Iglesias, J. & Damborsky, J. Web-based tools for computational enzyme design. Curr. Opin. Struct. Biol. 69, 19–34 (2021).Article  MATH  Google Scholar Hon, J. et al. SoluProt: prediction of soluble protein expression in Escherichia coli. Bioinformatics 37, 23–28 (2021).Article  MATH  Google Scholar Ding, Z. et al. MPEPE, a predictive approach to improve protein expression in E. coli based on deep learning. Comput. Struct. Biotechnol. J. 20, 1142–1153 (2022).Article  MATH  Google Scholar Thumuluri, V. et al. NetSolP: predicting protein solubility in E. coli using language models. Bioinformatics 38, 941–946 (2021).Article  MATH  Google Scholar Walker, J. M. The Proteomics Protocols Handbook (Humana Press, 2005).Cock, P. J. A. et al. Biopython: freely available python tools for computational molecular biology and bioinformatics. Bioinformatics 25, 1422–1423 (2009).Article  MATH  Google Scholar Schavemaker, P. E., Śmigiel, W. M. & Poolman, B. Ribosome surface properties may impose limits on the nature of the cytoplasmic proteome. eLife 6, e30084 (2017).Article  Google Scholar Yagi, S. et al. Seven amino acid types suffice to create the core fold of RNA polymerase. J. Am. Chem. Soc. 143, 15998–16006 (2021).Article  MATH  Google Scholar Berger, S. et al. Preclinical proof of principle for orally delivered Th17 antagonist miniproteins. Cell 187, 4305–4317.e18 (2024).Article  MATH  Google Scholar Structural Genomics Consortium et al. Protein production and purification. Nat. Methods 5, 135–146 (2008).Article  Google Scholar Wingfield, P. T. Overview of the purification of recombinant proteins. Curr. Protocols Protein Sci. https://doi.org/10.1002/0471140864.ps0601s80 (2015).Du, M. et al. 1Progress, applications, challenges and prospects of protein purification technology. Front. Bioeng. Biotechnol. https://doi.org/10.3389/fbioe.2022.1028691 (2022).Stemmer, W. P., Crameri, A., Ha, K. D., Brennan, T. M. & Heyneker, H. L. Single-step assembly of a gene and entire plasmid from large numbers of oligodeoxyribonucleotides. Gene 164, 49–53 (1995).Article  Google Scholar Gould, N., Hendy, O. & Papamichail, D. Computational tools and algorithms for designing customized synthetic genes. Front. Bioeng. Biotechnol. 2, 41 (2014).Article  MATH  Google Scholar Langan, R. A. et al. De novo design of bioactive protein switches. Nature 572, 205–210 (2019).Article  ADS  MATH  Google Scholar Miles, A. J., Janes, R. W. & Wallace, B. A. Tools and methods for circular dichroism spectroscopy of proteins: a tutorial review. Chem. Soc. Rev. 50, 8400–8413 (2021).Article  MATH  Google Scholar Micsonai, A. et al. Accurate secondary structure prediction and fold recognition for circular dichroism spectroscopy. Proc. Natl Acad. Sci. USA 112, E3095–E3103 (2015).Article  Google Scholar Koga, R. et al. Robust folding of a de novo designed ideal protein even with most of the core mutated to valine. Proc. Natl Acad. Sci. USA 117, 31149–31156 (2020).Article  ADS  MATH  Google Scholar Gao, K., Oerlemans, R. & Groves, M. R. Theory and applications of differential scanning fluorimetry in early-stage drug discovery. Biophys. Rev. 12, 85–104 (2020).Article  MATH  Google Scholar Lössl, P., van de Waterbeemd, M. & Heck, A. Jr. The diverse and expanding role of mass spectrometry in structural and molecular biology. EMBO J. 35, 2634–2657 (2016).Article  MATH  Google Scholar Lanucara, F., Holman, S. W., Gray, C. J. & Eyers, C. E. The power of ion mobility-mass spectrometry for structural characterization and the study of conformational dynamics. Nat. Chem. 6, 281–294 (2014).Article  MATH  Google Scholar Karch, K. R., Snyder, D. T., Harvey, S. R. & Wysocki, V. H. Native mass spectrometry: recent progress and remaining challenges. Annu. Rev. Biophys. 51, 157–179 (2022).Article  Google Scholar Figueroa, M. et al. The unexpected structure of the designed protein Octarellin V.1 forms a challenge for protein structure prediction tools. J. Struct. Biol. 195, 19–30 (2016).Article  MATH  Google Scholar Yagi, S. & Tagami, S. An ancestral fold reveals the evolutionary link between RNA polymerase and ribosomal proteins. Nat. Commun. 15, 5938 (2024).Article  MATH  Google Scholar Porter, L. L., Artsimovitch, I. & Ramírez-Sarmiento, C. A. Metamorphic proteins and how to find them. Curr. Opin. Struct. Biol. 86, 102807 (2024).Article  Google Scholar Bhattacharya, S. et al. NMR-guided directed evolution. Nature 610, 389–393 (2022).Article  ADS  MATH  Google Scholar Jaskolski, M., Dauter, Z. & Wlodawer, A. A brief history of macromolecular crystallography, illustrated by a family tree and its nobel fruits. FEBS J. 281, 3985–4009 (2014).Article  MATH  Google Scholar Wlodawer, A., Minor, W., Dauter, Z. & Jaskolski, M. Protein crystallography for non-crystallographers, or how to get the best (but not more) from published macromolecular structures. FEBS J. 275, 1–21 (2008).Article  MATH  Google Scholar Wlodawer, A., Minor, W., Dauter, Z. & Jaskolski, M. Protein crystallography for aspiring crystallographers or how to avoid pitfalls and traps in macromolecular structure determination. FEBS J. 280, 5705–5736 (2013).Article  MATH  Google Scholar Saibil, H. R. Cryo-EM in molecular and cellular biology. Mol. Cell 82, 274–284 (2022).Article  MATH  Google Scholar Jacques, D. A. & Trewhella, J. Small-angle scattering for structural biology — expanding the frontier while avoiding the pitfalls. Protein Sci. 19, 642–657 (2010).Article  MATH  Google Scholar Skou, S., Gillilan, R. E. & Ando, N. Synchrotron-based small-angle X-ray scattering of proteins in solution. Nat. Protoc. 9, 1727–1739 (2014).Article  Google Scholar Byer, A. S., Pei, X., Patterson, M. G. & Ando, N. Small-angle X-ray scattering studies of enzymes. Curr. Opin. Chem. Biol. 72, 102232 (2023).Article  Google Scholar Kobayashi, N. et al. Self-assembling nano-architectures created from a protein nano-building block using an intermolecularly folded dimeric de novo protein. J. Am. Chem. Soc. 137, 11285–11293 (2015).Article  MATH  Google Scholar Morris, R., Black, K. A. & Stollar, E. J. Uncovering protein function: from classification to complexes. Essays Biochem. 66, 255–285 (2022).Article  Google Scholar Zhou, M., Li, Q. & Wang, R. Current experimental methods for characterizing protein–protein interactions. ChemMedChem 11, 738–756 (2016).Article  MATH  Google Scholar Poluri, K. M., Gulati, K. & Sarkar, S. Experimental Methods for Determination of Protein–Protein Interactions 197–264 (Springer Singapore, 2021).Bisswanger, H. Enzyme assays. Perspect. Sci. 1, 41–55 (2014).Article  Google Scholar Chong, S. Overview of Cell-free Protein Synthesis: Historic Landmarks, Commercial Systems, and Expanding Applications 16.30.1–16.30.11 (John Wiley & Sons, Inc., 2014).Alfi, A. et al. Cell-free mutant analysis combined with structure prediction of a lasso peptide biosynthetic protease B2. ACS Synth. Biol. 11, 2022–2028 (2022).Article  MATH  Google Scholar Taguchi, H. & Niwa, T. Reconstituted cell-free translation systems for exploring protein folding and aggregation. J. Mol. Biol. 436, 168726 (2024).Article  MATH  Google Scholar Thornton, E. L. et al. Applications of cell free protein synthesis in protein design. Protein Sci. 33, e5148 (2024).Article  MATH  Google Scholar Zielonka, S. & Krah, S. (eds) in Methods in Molecular Biology 1st edn (ed. Clifton, N. J.) (Humana Press, 2019).Newton, M. S., Cabezas-Perusse, Y., Tong, C. L. & Seelig, B. In vitro selection of peptides and proteins — advantages of mRNA display. ACS Synth. Biol. 9, 181–190 (2020).Article  Google Scholar Gantz, M., Mathis, S. V., Nintzel, F. E. H., Lio, P. & Hollfelder, F. On synergy between ultrahigh throughput screening and machine learning in biocatalyst engineering. Faraday Discuss. 252, 89–114 (2024).Article  Google Scholar Park, C. & Marqusee, S. Pulse proteolysis: a simple method for quantitative determination of protein stability and ligand binding. Nat. Methods 2, 207–212 (2005).Article  MATH  Google Scholar Rocklin, G. J. et al. Global analysis of protein folding using massively parallel design, synthesis, and testing. Science 357, 168–175 (2017).Article  ADS  MathSciNet  MATH  Google Scholar Linsky, T. W. et al. Sampling of structure and sequence space of small protein folds. Nat. Commun. 13, 7151 (2022).Article  ADS  MATH  Google Scholar Araya, C. L. & Fowler, D. M. Deep mutational scanning: assessing protein function on a massive scale. Trends Biotechnol. 29, 435–442 (2011).Article  MATH  Google Scholar Forrer, P., Jung, S. & Pluckthun, A. Beyond binding: using phage display to select for structure, folding and enzymatic activity in proteins. Curr. Opin. Struct. Biol. 9, 514–520 (1999).Article  Google Scholar Seelig, B. & Szostak, J. W. Selection and evolution of enzymes from a partially randomized non-catalytic scaffold. Nature 448, 828–831 (2007).Article  ADS  MATH  Google Scholar Layton, C. J., McMahon, P. L. & Greenleaf, W. J. Large-scale, quantitative protein assays on a high-throughput DNA sequencing chip. Mol. Cell 73, 1075–1082.e4 (2019).Article  Google Scholar Markin, C. J. et al. Revealing enzyme functional architecture via high-throughput microfluidic enzyme kinetics. Science 373, eabf8761 (2021).Article  Google Scholar Lee, J. et al. A broadly generalizable stabilization strategy for sarbecovirus fusion machinery vaccines. Nat. Commun. 15, 5496 (2024).Article  MATH  Google Scholar Boyoglu-Barnum, S. et al. Quadrivalent influenza nanoparticle vaccines induce broad protection. Nature 592, 623–628 (2021).Article  ADS  Google Scholar Walls, A. C. et al. Elicitation of potent neutralizing antibody responses by designed protein nanoparticle vaccines for SARS-CoV-2. Cell 183, 1367–1382.e17 (2020).Article  ADS  MATH  Google Scholar Parkinson, J., Hard, R. & Wang, W. The RESP AI model accelerates the identification of tight-binding antibodies. Nat. Commun. 14, 454 (2023).Article  ADS  MATH  Google Scholar Mason, D. M. et al. Optimization of therapeutic antibodies by predicting antigen specificity from antibody sequence via deep learning. Nat. Biomed. Eng. 5, 600–612 (2021).Article  MATH  Google Scholar Makowski, E. K. et al. Co-optimization of therapeutic antibody affinity and specificity using machine learning models that generalize to novel mutational space. Nat. Commun. 13, 3788 (2022).Article  ADS  MATH  Google Scholar Shanker, V. R., Bruun, T. U. J., Hie, B. L. & Kim, P. S. Inverse folding of protein complexes with a structure-informed language model enables unsupervised antibody evolution. Preprint at bioRxiv https://doi.org/10.1101/2023.12.19.572475 (2023).Shanehsazzadeh, A. et al. Unlocking de novo antibody design with generative artificial intelligence. Preprint at bioRxiv https://doi.org/10.1101/2023.01.08.523187 (2023).Mahajan, S. P., Ruffolo, J. A., Frick, R. & Gray, J. J. Hallucinating structure-conditioned antibody libraries for target-specific binders. Front. Immunol. 13, 999034 (2022).Article  Google Scholar Giordano-Attianese, G. et al. A computationally designed chimeric antigen receptor provides a small-molecule safety switch for T-cell therapy. Nat. Biotechnol. 38, 426–432 (2020).Article  Google Scholar Sesterhenn, F. et al. Boosting subdominant neutralizing antibody responses with a computationally designed epitope-focused immunogen. PLoS Biol. 17, e3000164 (2019).Article  MATH  Google Scholar Dawson, W. M. et al. Differential sensing with arrays of de novo designed peptide assemblies. Nat. Commun. 14, 383 (2023).Article  ADS  MATH  Google Scholar Quijano-Rubio, A. et al. De novo design of modular and tunable protein biosensors. Nature 591, 482–487 (2021).Article  ADS  MATH  Google Scholar Zhang, J. Z. et al. Thermodynamically coupled biosensors for detecting neutralizing antibodies against SARS-CoV-2 variants. Nat. Biotechnol. 40, 1336–1340 (2022).Article  MATH  Google Scholar Ng, A. H. et al. Modular and tunable biological feedback control using a de novo protein switch. Nature 572, 265–269 (2019).Article  ADS  MATH  Google Scholar Lee, G. R. et al. Small-molecule binding and sensing with a designed protein family. Preprint at bioRxiv https://doi.org/10.1101/2023.11.01.565201 (2023).Rhys, G. G. et al. De novo designed peptides for cellular delivery and subcellular localisation. Nat. Chem. Biol. 18, 999–1004 (2022).Article  MATH  Google Scholar Huddy, T. F. et al. Blueprinting extendable nanomaterials with standardized protein blocks. Nature 627, 898–904 (2024).Article  ADS  MATH  Google Scholar Wargacki, A. J. et al. Complete and cooperative in vitro assembly of computationally designed self-assembling protein nanomaterials. Nat. Commun. 12, 883 (2021).Article  ADS  MATH  Google Scholar Kratochvil, H. T. et al. Transient water wires mediate selective proton transport in designed channel proteins. Nat. Chem. 15, 1012–1021 (2023).Article  MATH  Google Scholar Scott, A. J. et al. Constructing ion channels from water-soluble α-helical barrels. Nat. Chem. 13, 643–650 (2021).Article  MATH  Google Scholar Shimizu, K. et al. De novo design of a nanopore for single-molecule detection that incorporates a β-hairpin peptide. Nat. Nanotechnol. 17, 67–75 (2022).Article  ADS  MATH  Google Scholar Zhang, S. et al. Bottom-up fabrication of a proteasome-nanopore that unravels and processes single proteins. Nat. Chem. 13, 1192–1199 (2021).Article  ADS  MATH  Google Scholar Courbet, A. et al. Computational design of mechanically coupled axle-rotor protein assemblies. Science 376, 383–390 (2022).Article  ADS  MATH  Google Scholar Cao, L. et al. Design of protein-binding proteins from the target structure alone. Nature 605, 551–560 (2022).Article  ADS  MATH  Google Scholar Lauko, A. et al. Computational design of serine hydrolases. Preprint at bioRxiv https://doi.org/10.1101/2024.08.29.610411 (2024).Schnettler, J. D. et al. Selection of a promiscuous minimalist cAMP phosphodiesterase from a library of de novo designed proteins. Nat. Chem. 16, 1200–1208 (2024).Article  MATH  Google Scholar Röthlisberger, D. et al. Kemp elimination catalysts by computational enzyme design. Nature 453, 190–195 (2008).Article  ADS  Google Scholar Siegel, J. B. et al. Computational design of an enzyme catalyst for a stereoselective bimolecular Diels–Alder reaction. Science 329, 309–313 (2010).Article  ADS  MATH  Google Scholar Bjelic, S. et al. Computational design of enone-binding proteins with catalytic activity for the Morita–Baylis–Hillman reaction. ACS Chem. Biol. 8, 749–757 (2013).Article  Google Scholar Rajagopalan, S. et al. Design of activated serine-containing catalytic triads with atomic-level accuracy. Nat. Chem. Biol. 10, 386–391 (2014).Article  MATH  Google Scholar Khersonsky, O. et al. Evolutionary optimization of computationally designed enzymes: Kemp eliminases of the KE07 series. J. Mol. Biol. 396, 1025–1042 (2010).Article  MATH  Google Scholar Khersonsky, O. et al. Optimization of the in-silico-designed Kemp eliminase KE70 by computational design and directed evolution. J. Mol. Biol. 407, 391–412 (2011).Article  MATH  Google Scholar Khersonsky, O. et al. Bridging the gaps in design methodologies by evolutionary optimization of the stability and proficiency of designed kemp eliminase KE59. Proc. Natl Acad. Sci. USA 109, 10358–10363 (2012).Article  ADS  MATH  Google Scholar Blomberg, R. et al. Precision is essential for efficient catalysis in an evolved Kemp eliminase. Nature 503, 418–421 (2013).Article  ADS  MATH  Google Scholar Giger, L. et al. Evolution of a designed retro-aldolase leads to complete active site remodeling. Nat. Chem. Biol. 9, 494–498 (2013).Article  MATH  Google Scholar Preiswerk, N. et al. Impact of scaffold rigidity on the design and evolution of an artificial Diels-Alderase. Proc. Natl Acad. Sci. USA 111, 8013–8018 (2014).Article  ADS  MATH  Google Scholar Obexer, R. et al. Emergence of a catalytic tetrad during evolution of a highly active artificial aldolase. Nat. Chem. 9, 50–56 (2017).Article  Google Scholar Crawshaw, R. et al. Engineering an efficient and enantioselective enzyme for the Morita–Baylis–Hillman reaction. Nat. Chem. 14, 313–320 (2022).Article  MATH  Google Scholar Lux, M. W., Strychalski, E. A. & Vora, G. J. Advancing reproducibility can ease the ‘hard truths’ of synthetic biology. Synth. Biol. 8, ysad014 (2023).Article  Google Scholar Koehler Leman, J. et al. Better together: elements of successful scientific software development in a distributed collaborative community. PLoS Comput. Biol. 16, e1007507 (2020).Article  Google Scholar Koehler Leman, J. et al. Ensuring scientific reproducibility in bio-macromolecular modeling via extensive, automated benchmarks. Nat. Commun. 12, 6947 (2021).Article  ADS  MATH  Google Scholar Sandve, G. K., Nekrutenko, A., Taylor, J. & Hovig, E. Ten simple rules for reproducible computational research. PLoS Comput. Biol. 9, e1003285 (2013).Article  ADS  Google Scholar Moreau, D., Wiebels, K. & Boettiger, C. Containers for computational reproducibility. Nat. Rev. Methods Primers 3, 50 (2023).Article  Google Scholar Wilson, G. et al. Good enough practices in scientific computing. PLoS Comput. Biol. 13, e1005510 (2017).Article  Google Scholar Gibney, E. Not all ‘open source’ AI models are actually open: here’s a ranking. Nature https://doi.org/10.1038/d41586-024-02012-5 (2024).Liesenfeld, A. & Dingemanse, M. Rethinking open source generative AI: open washing and the EU AI act. In The 2024 ACM Conference on Fairness, Accountability, and Transparency (ACM, 2024).Hsia, Y. et al. Design of a hyperstable 60-subunit protein dodecahedron [corrected]. Nature 535, 136–139 (2016).Article  ADS  MATH  Google Scholar Alberstein, R. G., Guo, A. B. & Kortemme, T. Design principles of protein switches. Curr. Opin. Struct. Biol. 72, 71–78 (2022).Article  Google Scholar Cerasoli, E., Sharpe, B. K. & Woolfson, D. N. ZiCo: a peptide designed to switch folded state upon binding zinc. J. Am. Chem. Soc. 127, 15008–15009 (2005).Article  Google Scholar Zhu, J. & Lu, P. Computational design of transmembrane proteins. Curr. Opin. Struct. Biol. 74, 102381 (2022).Article  MATH  Google Scholar Chakravarty, D. & Porter, L. L. AlphaFold2 fails to predict protein fold switching. Protein Sci. 31, e4353 (2022).Article  Google Scholar Zambaldi, V. et al. De novo design of high-affinity protein binders with AlphaProteo. Preprint at https://arxiv.org/abs/2409.08022 (2024).Lu, H. et al. Machine learning-aided engineering of hydrolases for PET depolymerization. Nature 604, 662–667 (2022).Article  ADS  MATH  Google Scholar Raissi, M., Perdikaris, P. & Karniadakis, G. E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019).Article  ADS  MathSciNet  MATH  Google Scholar Jones, J. A., Andreas, M. P. & Giessen, T. W. Exploring the extreme acid tolerance of a dynamic protein nanocage. Biomacromolecules 24, 1388–1399 (2023).Article  Google Scholar Groenhof, G. Introduction to QM/MM simulations. Methods Mol. Biol. 924, 43–66 (2013).Article  Google Scholar Majewski, M. et al. Machine learning coarse-grained potentials of protein thermodynamics. Nat. Commun. 14, 5739 (2023).Article  ADS  MATH  Google Scholar Johnston, B. et al. Molecularnodes: v4.2.9 for Blender 4.2+. Zenodo https://doi.org/10.5281/zenodo.14241983 (2024).Fleuret, F. The little Book of Deep Learning https://fleuret.org/public/lbdl.pdf (Université de Genève, 2023).Vijayakumar, A. K. et al. Diverse beam search for improved description of complex scenes. In Proc. Thirty-Second AAAI Conference on Artificial Intelligence (eds McIlraith, S. A. & Weinberger, K. Q.) https://doi.org/10.1609/aaai.v32i1.12340 (AAAI Press, 2018).