Endoplasmic reticulum stress as a driver and therapeutic target for kidney disease

Wait 5 sec.

Francis, A. et al. Chronic kidney disease and the global public health agenda: an international consensus. Nat. Rev. Nephrol. 20, 473–485 (2024).Article  PubMed  Google Scholar Echefu, G., Stowe, I., Burka, S., Basu-Ray, I. & Kumbala, D. Pathophysiological concepts and screening of cardiovascular disease in dialysis patients. Front. Nephrol. 3, 1198560 (2023).Article  PubMed  PubMed Central  Google Scholar Jankowski, J., Floege, J., Fliser, D., Bohm, M. & Marx, N. Cardiovascular disease in chronic kidney disease: pathophysiological insights and therapeutic options. Circulation 143, 1157–1172 (2021).Article  CAS  PubMed  PubMed Central  Google Scholar Tonelli, M. et al. Risk of coronary events in people with chronic kidney disease compared with those with diabetes: a population-level cohort study. Lancet 380, 807–814 (2012).Article  PubMed  Google Scholar Wu, D. et al. Research progress on endoplasmic reticulum homeostasis in kidney diseases. Cell Death Dis. 14, 473 (2023).Article  CAS  PubMed  PubMed Central  Google Scholar Ren, J. et al. Endoplasmic reticulum stress and unfolded protein response in cardiovascular diseases. Nat. Rev. Cardiol. 18, 499–521 (2021).Article  PubMed  Google Scholar Marciniak, S. J., Chambers, J. E. & Ron, D. Pharmacological targeting of endoplasmic reticulum stress in disease. Nat. Rev. Drug. Discov. 21, 115–140 (2022).Article  CAS  PubMed  Google Scholar Hetz, C. et al. Mechanisms, regulation and functions of the unfolded protein response. Nat. Rev. Mol. Cell Biol. 21, 421–438 (2020).Article  CAS  PubMed  PubMed Central  Google Scholar Cybulsky, A. V. Endoplasmic reticulum stress, the unfolded protein response and autophagy in kidney diseases. Nat. Rev. Nephrol. 13, 681–696 (2017).Article  CAS  PubMed  Google Scholar Gallazzini, M. et al. Endoplasmic reticulum stress and kidney dysfunction. Biol. Cell 110, 205–216 (2018).Article  PubMed  Google Scholar Schwarz, D. et al. The endoplasmic reticulum: structure, function and response to cellular signaling. Cell. Mol. Life Sci. 73, 79–94 (2016).Article  CAS  PubMed  Google Scholar Zhong, Q. et al. Protein posttranslational modifications in health and diseases: functions, regulatory mechanisms, and therapeutic implications. MedComm 4, 261 (2023).Article  Google Scholar Chen, X. et al. Endoplasmic reticulum stress: molecular mechanism and therapeutic targets. Signal. Transduct. Target. Ther. 8, 352 (2023).Article  CAS  PubMed  PubMed Central  Google Scholar Ibrahim, I. et al. GRP78: a cell’s response to stress. Life Sci. 226, 156–163 (2019).Article  CAS  PubMed  PubMed Central  Google Scholar Siwecka, N. et al. The structure, activation and signaling of IRE1 and its role in determining cell fate. Biomedicines 9, 156 (2021).Article  CAS  PubMed  PubMed Central  Google Scholar Maurel, M., Chevet, E., Tavernier, J. & Gerlo, S. Getting RIDD of RNA: IRE1 in cell fate regulation. Trends Biochem. Sci. 39, 245–254 (2014).Article  CAS  PubMed  Google Scholar Hillary, R. F. & FitzGerald, U. A lifetime of stress: ATF6 in development and homeostasis. J. Biomed. Sci. 25, 48 (2018).Article  PubMed  PubMed Central  Google Scholar Liu, Z., Lv, Y., Zhao, N., Guan, G. & Wang, J. Protein kinase R-like ER kinase and its role in endoplasmic reticulum stress-decided cell fate. Cell Death Dis. 6, e1822 (2015).Article  CAS  PubMed  PubMed Central  Google Scholar Szegezdi, E. et al. Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep. 7, 880–885 (2006).Article  CAS  PubMed  PubMed Central  Google Scholar Verfaillie, T. et al. PERK is required at the ER-mitochondrial contact sites to convey apoptosis after ROS-based ER stress. Cell Death Differ. 19, 1880–1891 (2012).Article  CAS  PubMed  PubMed Central  Google Scholar Wang, X. et al. Cloning of mammalian IRE1 reveals diversity in the ER stress responses. EMBO J. 19, 5708–5717 (1998).Article  Google Scholar Dhanasekaran, D. et al. JNK-signaling: a multiplexing hub in programmed cell death. Genes. Cancer 8, 682–694 (2017).Article  CAS  PubMed  PubMed Central  Google Scholar Lu, T. et al. Co-downregulation of GRP78 and GRP94 induces apoptosis and inhibits migration in prostate cancer cells. Open Life Sci. 14, 384–391 (2019).Article  CAS  PubMed  PubMed Central  Google Scholar Chen, J. H., Wu, C. H. & Chiang, C. K. Therapeutic approaches targeting proteostasis in kidney disease and fibrosis. Int. J. Mol. Sci. 22, 8674 (2021).Article  CAS  PubMed  PubMed Central  Google Scholar Lebeau, P. F. et al. The loss-of-function PCSK9Q152H variant increases ER chaperones GRP78 and GRP94 and protects against liver injury. J. Clin. Invest. 131, e128650 (2021).Article  CAS  PubMed  PubMed Central  Google Scholar Cybulsky, A. V. The intersecting roles of endoplasmic reticulum stress, ubiquitin-proteasome system, and autophagy in the pathogenesis of proteinuric kidney disease. Kidney Int. 84, 25–33 (2013).Article  CAS  PubMed  Google Scholar Bek, M. F. et al. Expression and function of C/EBP homology protein (GADD153) in podocytes. Am. J. Pathol. 168, 20–32 (2006).Article  CAS  PubMed  PubMed Central  Google Scholar Markan, S. et al. Up regulation of the GRP-78 and GADD-153 and down regulation of Bcl-2 proteins in primary glomerular diseases: a possible involvement of the ER stress pathway in glomerulonephritis. Mol. Cell Biochem. 324, 131–138 (2009).Article  CAS  PubMed  Google Scholar Chung, C. et al. Analysis of gene expression and use of connectivity mapping to identify drugs for treatment of human glomerulopathies. Front Med 13, 1122328 (2023).Article  Google Scholar Ni, L., Yuan, C. & Wu, X. Endoplasmic reticulum stress in diabetic nephrology: regulation, pathological role, and therapeutic potential. Oxid. Med. Cell Longev. 2021, 7277966 (2021).Article  PubMed  PubMed Central  Google Scholar Duangchan, T. et al. Amelioration of osteogenesis in iPSC-derived mesenchymal stem cells from osteogenesis imperfecta patients by endoplasmic reticulum stress inhibitor. Life Sci. 278, 119628 (2021).Article  CAS  PubMed  Google Scholar Masuda, M. et al. Activating transcription factor-4 promotes mineralization in vascular smooth muscle cells. JCI Insight 1, e88646 (2016).Article  PubMed  PubMed Central  Google Scholar Duan, X. H. et al. Activating transcription factor 4 is involved in endoplasmic reticulum stress-mediated apoptosis contributing to vascular calcification. Apoptosis 18, 1132–1144 (2013).Article  CAS  PubMed  Google Scholar Chen, S. et al. Calcium entry via TRPC6 mediates albumin overload-induced endoplasmic reticulum stress and apoptosis in podocytes. Cell Calcium 50, 523–529 (2011).Article  CAS  PubMed  Google Scholar Maekawa, H. et al. Stress signal network between hypoxia and ER stress in chronic kidney disease. Front. Physiol. 8, 74 (2017).Article  PubMed  PubMed Central  Google Scholar Liu, Z. et al. ER chaperone GRP78/BiP translocates to the nucleus under stress and acts as a transcriptional regulator. Proc. Natl Acad. Sci. USA 120, e2303448120 (2023).Article  CAS  PubMed  PubMed Central  Google Scholar Ni, M., Zhang, Y. & Lee, A. S. Beyond the endoplasmic reticulum: atypical GRP78 in cell viability, signalling and therapeutic targeting. Biochem. J. 434, 181–188 (2011).Article  CAS  PubMed  Google Scholar Sarantis, P., Koustas, E., Papadimitropoulou, A., Papavassiliou, A. G. & Karamouzis, M. V. Pancreatic ductal adenocarcinoma: treatment hurdles, tumor microenvironment and immunotherapy. World J. Gastrointest. Oncol. 12, 173–181 (2020).Article  PubMed  PubMed Central  Google Scholar Li, Z. et al. Cell-surface GRP78 facilitates colorectal cancer cell migration and invasion. Int. J. Biochem. Cell Biol. 45, 987–994 (2013).Article  CAS  PubMed  Google Scholar Misra, U. K., Payne, S. & Pizzo, S. V. Ligation of prostate cancer cell surface GRP78 activates a proproliferative and antiapoptotic feedback loop: a role for secreted prostate-specific antigen. J. Biol. Chem. 286, 1248–1259 (2011).Article  CAS  PubMed  Google Scholar Gonzalez-Gronow, M. et al. Prostate cancer cell proliferation in vitro is modulated by antibodies against glucose-regulated protein 78 isolated from patient serum. Cancer Res. 66, 11424–11431 (2006).Article  CAS  PubMed  Google Scholar Lager, T. W., Conner, C., Keating, C. R., Warshaw, J. N. & Panopoulos, A. D. Cell surface GRP78 and dermcidin cooperate to regulate breast cancer cell migration through Wnt signaling. Oncogene 40, 4050–4059 (2021).Article  CAS  PubMed  PubMed Central  Google Scholar Gonzalez-Gronow, M., Gopal, U., Austin, R. C. & Pizzo, S. V. Glucose-regulated protein (GRP78) is an important cell surface receptor for viral invasion, cancers, and neurological disorders. IUBMB Life 73, 843–854 (2021).Article  CAS  PubMed  Google Scholar Van Krieken, R. et al. Cell surface expression of 78-kDa glucose-regulated protein (GRP78) mediates diabetic nephropathy. J. Biol. Chem. 294, 7755–7768 (2019).Article  PubMed  PubMed Central  Google Scholar Xu, S., Sankar, S. & Neamati, N. Protein disulfide isomerase: a promising target for cancer therapy. Drug. Discov. Today 19, 222–240 (2014).Article  CAS  PubMed  Google Scholar Dejeans, N. et al. Overexpression of GRP94 in breast cancer cells resistant to oxidative stress promotes high levels of cancer cell proliferation and migration: implications for tumor recurrence. Free. Radic. Biol. Med. 52, 993–1002 (2012).Article  CAS  PubMed  Google Scholar Zamanian, M., Veerakumarasivam, A., Abdullah, S. & Rosli, R. Calreticulin and cancer. Pathol. Oncol. Res. 19, 149–154 (2013).Article  CAS  PubMed  Google Scholar Trink, J. et al. Integrin β1/cell surface GRP78 complex regulates TGFβ1 and its profibrotic effects in response to high glucose. Biomedicines 10, 2247 (2022).Article  CAS  PubMed  PubMed Central  Google Scholar Meng, X. M., Nikolic-Paterson, D. J. & Lan, H. Y. TGF-β: the master regulator of fibrosis. Nat. Rev. Nephrol. 12, 325–338 (2016).Article  CAS  PubMed  Google Scholar Trink, J. et al. Cell surface GRP78 regulates TGFβ1-mediated profibrotic responses via TSP1 in diabetic kidney disease. Front. Pharmacol. 14, 1098321 (2023).Article  CAS  PubMed  PubMed Central  Google Scholar Tsai, Y. L. et al. Characterization and mechanism of stress-induced translocation of 78-kilodalton glucose-regulated protein (GRP78) to the cell surface. J. Biol. Chem. 290, 8049–8064 (2015).Article  CAS  PubMed  PubMed Central  Google Scholar Aitken, J. P. et al. α-2-macroglobulin in saliva is associated with glycemic control in patients with type 2 diabetes mellitus. Dis. Markers 2015, 128653 (2015).Article  PubMed  PubMed Central  Google Scholar Ahmad, J., Singh, M. & Saleemuddin, M. A study of plasma alpha-2-macroglobulin levels in type 2 diabetic subjects with microalbuminuria. J. Assoc. Physicians India 49, 1062–1065 (2001).CAS  PubMed  Google Scholar Yang, A. H. & Chen, J. Y. Glomerular deposition of alpha 2-macroglobulin in glomerular diseases. Nephrol. Dial. Transpl. 12, 465–469 (1997).Article  CAS  Google Scholar Trink, J. et al. Activated alpha 2-macroglobulin is a novel mediator of mesangial cell profibrotic signaling in diabetic kidney disease. Biomedicines 9, 1112 (2021).Article  CAS  PubMed  PubMed Central  Google Scholar Fan, G. et al. Urine proteomics identifies biomarkers for diabetic kidney disease at different stages. Clin. Proteom. 18, 32 (2021).Article  CAS  Google Scholar Menon, R. et al. Single cell transcriptomics identifies focal segmental glomerulosclerosis remission endothelial biomarker. JCI Insight 5, e133267 (2020).Article  PubMed  PubMed Central  Google Scholar Yang, L. et al. Unspliced XBP1 counteracts β-catenin to inhibit vascular calcification. Circ. Res. 130, 213–229 (2022).Article  CAS  PubMed  Google Scholar Arhatte, M. et al. TMEM33 regulates intracellular calcium homeostasis in renal tubular epithelial cells. Nat. Commun. 10, 2024 (2019).Article  PubMed  PubMed Central  Google Scholar De Miguel, C. et al. Endothelin receptor-specific control of endoplasmic reticulum stress and apoptosis in the kidney. Sci. Rep. 7, 43152 (2017).Article  PubMed  PubMed Central  Google Scholar Yoshida, S. et al. Endoplasmic reticulum-associated degradation is required for nephrin maturation and kidney glomerular filtration function. J. Clin. Invest. 1, 131 (2021).Google Scholar Zhang, J. et al. Resveratrol decreases high glucose-induced apoptosis in renal tubular cells via suppressing endoplasmic reticulum stress. Mol. Med. Rep. 22, 4367–4375 (2020).PubMed  PubMed Central  Google Scholar Ha, K. B. et al. EW-7197 attenuates the progression of diabetic nephropathy in db/db mice through suppression of fibrogenesis and inflammation. Endocrinol. Metab. 37, 96–111 (2022).Article  CAS  Google Scholar Sun, Y., Zhang, T., Li, L. & Wang, J. Induction of apoptosis by hypertension via endoplasmic reticulum stress. Kidney Blood Press. Res. 40, 41–51 (2015).Article  CAS  PubMed  Google Scholar Naiel, S., Carlisle, R. E., Lu, C., Tat, V. & Dickhout, J. G. Endoplasmic reticulum stress inhibition blunts the development of essential hypertension in the spontaneously hypertensive rat. Am. J. Physiol. Heart Circ. Physiol 316, H1214–H1223 (2019).Article  CAS  PubMed  Google Scholar Jones, F. E. et al. ER stress and basement membrane defects combine to cause glomerular and tubular renal disease resulting from Col4a1 mutations in mice. Dis. Model. Mech. 9, 165–176 (2016).Article  CAS  PubMed  PubMed Central  Google Scholar Delitsikou, V. et al. Klotho regulation by albuminuria is dependent on ATF3 and endoplasmic reticulum stress. FASEB J. 34, 2087–2104 (2020).Article  CAS  PubMed  Google Scholar Fernández-Fernández, B. et al. Albuminuria downregulation of the anti-aging factor klotho: the missing link potentially explaining the association of pathological albuminuria with premature death. Adv. Ther. 37, 62–72 (2020).Article  PubMed  Google Scholar Huang, D. et al. Cardiac-specific overexpression of silent information regulator 1 protects against heart and kidney deterioration in cardiorenal syndrome via inhibition of endoplasmic reticulum stress. Cell Physiol. Biochem. 46, 9–22 (2018).Article  PubMed  Google Scholar Byun, J. H. et al. Inhibitory antibodies against PCSK9 reduce surface CD36 and mitigate diet-induced renal lipotoxicity. Kidney360 3, 1394–1410 (2022).Article  PubMed  PubMed Central  Google Scholar Marek, I. et al. Sex differences in the development of vascular and renal lesions in mice with a simultaneous deficiency of Apoe and the integrin chain Itga8. Biol. Sex. Differ. 8, 19 (2017).Article  PubMed  PubMed Central  Google Scholar Chen, Y. T. et al. Endoplasmic reticulum protein TXNDC5 promotes renal fibrosis by enforcing TGF-β signaling in kidney fibroblasts. J. Clin. Invest. 131, e143645 (2021).Article  CAS  PubMed  PubMed Central  Google Scholar Jones, E. A., Shahed, A. & Shoskes, D. A. Modulation of apoptotic and inflammatory genes by bioflavonoids and angiotensin II inhibition in ureteral obstruction. Urology 56, 346–351 (2000).Article  CAS  PubMed  Google Scholar Ding, W., Wang, B., Zhang, M. & Gu, Y. Involvement of endoplasmic reticulum stress in uremic cardiomyopathy: protective effects of tauroursodeoxycholic acid. Cell Physiol. Biochem. 38, 141–152 (2016).Article  CAS  PubMed  Google Scholar Feng, W. et al. Advanced oxidation protein products aggravate cardiac remodeling via cardiomyocyte apoptosis in chronic kidney disease. Am. J. Physiol. Heart Circ. Physiol 314, H475–H483 (2018).Article  PubMed  Google Scholar Guo, J. et al. Chronic kidney disease exacerbates myocardial ischemia reperfusion injury: role of endoplasmic reticulum stress-mediated apoptosis. Shock 49, 712–720 (2018).Article  CAS  PubMed  Google Scholar Dai, H., Zhang, X., Yang, Z., Li, J. & Zheng, J. Effects of baicalin on blood pressure and left ventricular remodeling in rats with renovascular hypertension. Med. Sci. Monit. 23, 2939–2948 (2017).Article  PubMed  PubMed Central  Google Scholar Mohammed-Ali, Z. et al. Endoplasmic reticulum stress inhibition attenuates hypertensive chronic kidney disease through reduction in proteinuria. Sci. Rep. 7, 41572 (2017).Article  CAS  PubMed  PubMed Central  Google Scholar Han, S. et al. Inhibition of endoplasmic reticulum stress protected DOCA-salt hypertension-induced vascular dysfunction. Vasc. Pharmacol. 113, 38–46 (2019).Article  CAS  Google Scholar Li, K. X., Du, Q., Wang, H. P. & Sun, H. J. Death-associated protein kinase 3 deficiency alleviates vascular calcification via AMPK-mediated inhibition of endoplasmic reticulum stress. Eur. J. Pharmacol. 852, 90–98 (2019).Article  CAS  PubMed  Google Scholar Moellmann, J. et al. 2,8-Dihydroxyadenine-induced nephropathy causes hexosylceramide accumulation with increased mTOR signaling, reduced levels of protective SirT3 expression and impaired renal mitochondrial function. Biochim. Biophys. Acta Mol. Basis Dis. 1870, 166825 (2024).Article  CAS  PubMed  Google Scholar Chang, J. R. et al. Erythropoietin attenuates vascular calcification by inhibiting endoplasmic reticulum stress in rats with chronic kidney disease. Peptides 123, 170181 (2020).Article  CAS  PubMed  Google Scholar Zhang, Y. et al. The ameliorative effect of terpinen-4-ol on ER stress-induced vascular calcification depends on SIRT1-mediated regulation of PERK acetylation. Pharmacol. Res. 170, 105629 (2021).Article  CAS  PubMed  Google Scholar Li, C. & Chen, Y. M. Endoplasmic reticulum-associated biomarkers for molecular phenotyping of rare kidney disease. Int. J. Mol. Sci. 22, 2161 (2021).Article  CAS  PubMed  PubMed Central  Google Scholar Ma, N. et al. Levels of circulating GRP78 and CHOP in endoplasmic reticulum stress pathways in Chinese type 2 diabetic kidney disease patients. Medicine 100, e26879 (2021).Article  CAS  PubMed  PubMed Central  Google Scholar Al Zaidi M. et al. Serum levels of the endoplasmic-reticulum-stress chaperone GRP78 are associated with inflammation, identify patients with coronary artery disease and predict mortality. Eur. Heart J. 44, ehad655.1196 (2023).Article  Google Scholar Crane, E. D. et al. Anti-GRP78 autoantibodies induce endothelial cell activation and accelerate the development of atherosclerotic lesions. JCI Insight 3, e99363 (2018).Article  PubMed  PubMed Central  Google Scholar Kim, Y. et al. Mesencephalic astrocyte-derived neurotrophic factor as a urine biomarker for endoplasmic reticulum stress-related kidney diseases. J. Am. Soc. Nephrol. 10, 2974–2982 (2016).Article  Google Scholar Tousson-Abdouelazm, N. et al. Urinary ERdj3 and mesencephalic astrocyte-derived neutrophic factor identify endoplasmic reticulum stress in glomerular disease. Lab. Invest. 100, 945–958 (2020).Article  Google Scholar Nasr, S. H. et al. Serum levels of DNAJB9 are elevated in fibrillary glomerulonephritis patients. Kidney Int. 95, 1269–1272 (2019).Article  CAS  PubMed  Google Scholar Dihazi, H. et al. Secretion of ERP57 is important for extracellular matrix accumulation and progression of renal fibrosis, and is an early sign of disease onset. J. Cell Sci. 126, 3649–3663 (2013).CAS  PubMed  Google Scholar Kim, Y. et al. Elevated urinary CRELD2 is associated with endoplasmic reticulum stress-mediated kidney disease. JCI Insight 2, e92896 (2017).Article  PubMed  PubMed Central  Google Scholar Torene, R. I. et al. Systematic analysis of variants escaping nonsense-mediated decay uncovers candidate Mendelian diseases. Am. J. Hum. Genet. 111, 70–81 (2024).Article  CAS  PubMed  Google Scholar Consolato, F. et al. α-Gal A missense variants associated with Fabry disease can lead to ER stress and induction of the unfolded protein response. Mol. Genet. Metab. Rep. 33, 100926 (2022).CAS  PubMed  PubMed Central  Google Scholar McCafferty, E. H. & Scott, L. J. Migalastat: a review in Fabry disease. Drugs 79, 543–554 (2019).Article  CAS  PubMed  PubMed Central  Google Scholar Yam, G. H., Bosshard, N., Zuber, C., Steinmann, B. & Roth, J. Pharmacological chaperone corrects lysosomal storage in Fabry disease caused by trafficking-incompetent variants. Am. J. Physiol. Cell Physiol 290, C1076–C1082 (2006).Article  CAS  PubMed  Google Scholar Yam, G. H., Zuber, C. & Roth, J. A synthetic chaperone corrects the trafficking defect and disease phenotype in a protein misfolding disorder. FASEB J. 19, 12–18 (2005).Article  CAS  PubMed  Google Scholar Hughes, D. A. et al. Oral pharmacological chaperone migalastat compared with enzyme replacement therapy in Fabry disease: 18-month results from the randomised phase III ATTRACT study. J. Med. Genet. 54, 288–296 (2017).Article  CAS  PubMed  Google Scholar Olinger, E. et al. Clinical and genetic spectra of autosomal dominant tubulointerstitial kidney disease due to mutations in UMOD and MUC1. Kidney Int. 98, 717–731 (2020).Article  CAS  PubMed  Google Scholar Scolari, F., Izzi, C. & Ghiggeri, G. M. Uromodulin: from monogenic to multifactorial diseases. Nephrol. Dial. Transpl. 30, 1250–1256 (2015).Article  CAS  Google Scholar Devuyst, O. et al. Autosomal dominant tubulointerstitial kidney disease. Nat. Rev. Dis. Primers 5, 60 (2019).Article  PubMed  Google Scholar Olinger, E. et al. An intermediate-effect size variant in UMOD confers risk for chronic kidney disease. Proc. Natl Acad. Sci. USA 119, e2114734119 (2022).Article  CAS  PubMed Central  Google Scholar Liu, Y., Goldfarb, D. S., El-Achkar, T. M., Lieske, J. C. & Wu, X. R. Tamm-Horsfall protein/uromodulin deficiency elicits tubular compensatory responses leading to hypertension and hyperuricemia. Am. J. Physiol. Renal Physiol 314, F1062–F1076 (2018).Article  CAS  PubMed  PubMed Central  Google Scholar Schaeffer, C., Merella, S., Pasqualetto, E., Lazarevic, D. & Rampoldi, L. Mutant uromodulin expression leads to altered homeostasis of the endoplasmic reticulum and activates the unfolded protein response. PLoS ONE 12, e0175970 (2017).Article  PubMed  PubMed Central  Google Scholar Johnson, B. et al. Uromodulin p.Cys147Trp mutation drives kidney disease by activating ER stress and apoptosis. J. Clin. Invest. 127, 3954–3969 (2017).Article  PubMed  PubMed Central  Google Scholar Kemter, E., Frohlich, T., Arnold, G. J., Wolf, E. & Wanke, R. Mitochondrial dysregulation secondary to endoplasmic reticulum stress in autosomal dominant tubulointerstitial kidney disease — UMOD (ADTKD-UMOD). Sci. Rep. 7, 42970 (2017).Article  CAS  PubMed  PubMed Central  Google Scholar Kim, Y. et al. MANF stimulates autophagy and restores mitochondrial homeostasis to treat autosomal dominant tubulointerstitial kidney disease in mice. Nat. Commun. 14, 6493 (2023).Article  CAS  PubMed  PubMed Central  Google Scholar Amatruda, J. G. et al. Biomarkers of kidney tubule disease and risk of end-stage kidney disease in persons with diabetes and CKD. Kidney Int. Rep. 7, 1514–1523 (2022).Article  PubMed  PubMed Central  Google Scholar Lanktree, M. B. et al. A novel multi-ancestry proteome-wide Mendelian randomization study implicates extracellular proteins, tubular cells, and fibroblasts in estimated glomerular filtration rate regulation. Kidney Int. 104, 1170–1184 (2023).Article  CAS  PubMed  Google Scholar Turner, M. & Staplin, N. UMOD-ulating CKD risk: untangling the relationship between urinary uromodulin, blood pressure, and kidney disease. Kidney Int. 100, 1168–1170 (2021).Article  CAS  PubMed  Google Scholar Kim, Y. et al. Ultrabright plasmonic fluor nanolabel-enabled detection of a urinary ER stress biomarker in autosomal dominant tubulointerstitial kidney disease. Am. J. Physiol. Renal Physiol 321, F236–F244 (2021).Article  CAS  PubMed  PubMed Central  Google Scholar Daga, S. et al. The 2019 and 2021 international workshops on Alport syndrome. Eur. J. Hum. Genet. 30, 507–516 (2022).Article  CAS  PubMed  PubMed Central  Google Scholar Papazachariou, L. et al. Frequency of COL4A3/COL4A4 mutations amongst families segregating glomerular microscopic hematuria and evidence for activation of the unfolded protein response. Focal and segmental glomerulosclerosis is a frequent development during ageing. PLoS ONE 9, e115015 (2014).Article  PubMed  PubMed Central  Google Scholar Wang, D. et al. The chemical chaperone, PBA, reduces ER stress and autophagy and increases collagen IV alpha5 expression in cultured fibroblasts from men with X-linked Alport syndrome and missense mutations. Kidney Int. Rep. 2, 739–748 (2017).Article  PubMed  PubMed Central  Google Scholar Hirayama, R. et al. iPSC-derived type IV collagen α5-expressing kidney organoids model Alport syndrome. Commun. Biol. 28, 854 (2023).Article  Google Scholar Park, S. J., Kim, Y. & Chen, Y. M. Endoplasmic reticulum stress and monogenic kidney diseases in precision nephrology. Pediatr. Nephrol. 34, 1493–1500 (2019).Article  PubMed  Google Scholar Kopp, J. B. et al. APOL1 genetic variants in focal segmental glomerulosclerosis and HIV-associated nephropathy. J. Am. Soc. Nephrol. 22, 2129–2137 (2011).Article  CAS  PubMed  PubMed Central  Google Scholar Egbuna, O. et al. Inaxaplin for proteinuric kidney disease in persons with two APOL1 variants. N. Engl. J. Med. 388, 969–979 (2023).Article  CAS  PubMed  Google Scholar Madhavan, S. et al. Variant upon variant: kidney-disease risk associated with APOL1 G2 genetic variants is abrogated by the APOL1 p.N264K variant. Kidney Int. 24, 325–329 (2024).Google Scholar Wen, H. et al. APOL1 risk variants cause podocytes injury through enhancing endoplasmic reticulum stress. Biosci. Rep. 38, BSR20171713 (2018).Article  PubMed  PubMed Central  Google Scholar Mitrotti, A. et al. Hidden genetics behind glomerular scars: an opportunity to understand the heterogeneity of focal segmental glomerulosclerosis? Pediatr. Nephrol. 6, 1685–1707 (2024).Article  Google Scholar Kuzmuk, V. et al. A small molecule chaperone rescues keratin-8 mediated trafficking of misfolded podocin to correct genetic nephrotic syndrome. Kidney Int. 105, 744–758 (2024).Article  CAS  PubMed  Google Scholar Navarro-Betancourt, J. R. et al. Role of IRE1α in podocyte proteostasis and mitochondrial health. Cell Death Discov. 6, 128 (2020).Article  CAS  PubMed  PubMed Central  Google Scholar Achari, G. et al. Effect of temperature on the action of calcium on isolated rabbit ileum. Jpn J. Pharmacol. 18, 418–420 (1968).Article  CAS  PubMed  Google Scholar Serrano-Perez, M. C. et al. Endoplasmic reticulum-retained podocin mutants are massively degraded by the proteasome. J. Biol. Chem. 293, 4122–4133 (2018).Article  CAS  PubMed  PubMed Central  Google Scholar Yan, Z. et al. A single-center analysis of genotype-phenotype characteristics of Chinese patients with autosomal dominant polycystic kidney disease by targeted exome sequencing. Front. Genet. 13, 934463 (2022).Article  CAS  PubMed  PubMed Central  Google Scholar Cornec-Le Gall, E. et al. Type of PKD1 mutation influences renal outcome in ADPKD. J. Am. Soc. Nephrol. 24, 1006–1013 (2013).Article  PubMed  PubMed Central  Google Scholar Lanktree, M. B., Haghighi, A., di Bari, I., Song, X. & Pei, Y. Insights into autosomal dominant polycystic kidney disease from genetic studies. Clin. J. Am. Soc. Nephrol. 16, 790–799 (2021).Article  CAS  PubMed  PubMed Central  Google Scholar Ishikawa, Y. et al. Spliced XBP1 rescues renal interstitial inflammation due to loss of Sec63 in collecting ducts. J. Am. Soc. Nephrol. 30, 443–459 (2019).Article  CAS  PubMed  PubMed Central  Google Scholar Fedeles, S. V. et al. Sec63 and Xbp1 regulate IRE1α activity and polycystic disease severity. J. Clin. Invest. 125, 1955–1967 (2015).Article  PubMed  PubMed Central  Google Scholar Zhou, X. et al. PKD2 deficiency suppresses amino acid biosynthesis in ADPKD by impairing the PERK-TBL2-eIF2a-ATF4 pathway. Biochem. Biophys. Res. Commun. 561, 73–79 (2021).Article  CAS  PubMed  Google Scholar Westland, R. & Sanna-Cherchi, S. Recessive mutations in CAKUT and VACTERL association. Kidney Int. 85, 1253–1255 (2014).Article  CAS  PubMed  Google Scholar Kolvenbach, C. M., Shril, S. & Hildebrandt, F. The genetics and pathogenesis of CAKUT. Nat. Rev. Nephrol. 19, 709–720 (2023).Article  CAS  PubMed  Google Scholar Saisawat, P. et al. Whole-exome resequencing reveals recessive mutations in TRAP1 in individuals with CAKUT and VACTERL association. Kidney Int. 85, 1310–1317 (2014).Article  CAS  PubMed  Google Scholar Deeb A., Al-Zidgali F., Ofoegbu B. N. Multicystic dysplastic kidney: a new association of Wolcott-Rallison syndrome. Endocrinol. Diabetes Metab. Case Rep. 2017, 17-0090 (2017).PubMed  PubMed Central  Google Scholar Cameron, N. E. Role of endoplasmic reticulum stress in diabetic neuropathy. Diabetes 62, 696–697 (2013).Article  CAS  PubMed  PubMed Central  Google Scholar Lee, E. S. et al. Oleanolic acid and N-acetylcysteine ameliorate diabetic nephropathy through reduction of oxidative stress and endoplasmic reticulum stress in a type 2 diabetic rat model. Nephrol. Dial. Transpl. 31, 391–400 (2016).Article  CAS  Google Scholar Inagi, R. et al. Involvement of endoplasmic reticulum (ER) stress in podocyte injury induced by excessive protein accumulation. Kidney Int. 68, 2639–2650 (2005).Article  CAS  PubMed  Google Scholar Sieber, J. et al. Regulation of podocyte survival and endoplasmic reticulum stress by fatty acids. Am. J. Physiol. Renal Physiol 299, F821–F829 (2010).Article  CAS  PubMed  PubMed Central  Google Scholar Madhusudhan, T. et al. Defective podocyte insulin signalling through p85-XBP1 promotes ATF6-dependent maladaptive ER-stress response in diabetic nephropathy. Nat. Commun. 6, 6496 (2015).Article  CAS  PubMed  Google Scholar Huang, Y. et al. High-expression of FABP4 in tubules is a risk factor for poor prognosis in DKD patients. Curr. Med. Chem. 31, 3436–3446 (2024).Article  CAS  PubMed  Google Scholar Yao, F. et al. Fatty acid-binding protein 4 mediates apoptosis via endoplasmic reticulum stress in mesangial cells of diabetic nephropathy. Mol. Cell Endocrinol. 15, 232–242 (2015).Article  Google Scholar Xie, Y. et al. Reticulon-1A mediates diabetic kidney disease progression through endoplasmic reticulum-mitochondrial contacts in tubular epithelial cells. Kidney Int. 102, 293–306 (2022).Article  CAS  PubMed  PubMed Central  Google Scholar Shahzed, K. et al. CHOP-ASO ameliorates glomerular and tubular damage on top of ACE inhibition in diabetic kidney disease. J. Am. Soc. Nephrol. 32, 3066–3079 (2021).Article  Google Scholar Wang, M. et al. Beneficial effect of ER stress preconditioning in protection against FFA-induced adipocyte inflammation via XBP1 in 3T3-L1 adipocytes. Mol. Cell Biochem. 463, 45–55 (2020).Article  CAS  PubMed  Google Scholar Chen, B. et al. Epigallocatechin-3-gallate protects against cisplatin-induced nephrotoxicity by inhibiting endoplasmic reticulum stress-induced apoptosis. Exp. Biol. Med. 240, 1513–1519 (2015).Article  CAS  Google Scholar Basseri, S., Lhotak, S., Sharma, A. M. & Austin, R. C. The chemical chaperone 4-phenylbutyrate inhibits adipogenesis by modulating the unfolded protein response. J. Lipid Res. 50, 2486–2501 (2009).Article  CAS  PubMed  PubMed Central  Google Scholar Vang, S., Longley, K., Steer, C. J. & Low, W. C. The unexpected uses of urso- and tauroursodeoxycholic acid in the treatment of non-liver diseases. Glob. Adv. Health Med. 3, 58–69 (2014).Article  PubMed  PubMed Central  Google Scholar Weaver, F. E. et al. 4-Phenylbutyric acid mitigates ER stress-induced neurodegeneration in the spinal cords of a GM2 gangliosidosis mouse model. Hum. Mol. Genet. 34, 32–46 (2024).Article  PubMed Central  Google Scholar Bonnemaison, M. L., Marks-Nelson, E. S. & Boesen, E. I. Sodium 4-phenylbutyrate treatment protects against renal injury in NZBWF1 mice. Clin. Sci. 133, 167–180 (2019).Article  CAS  Google Scholar Liu, S. H. et al. Chemical chaperone 4-phenylbutyrate protects against the endoplasmic reticulum stress-mediated renal fibrosis in vivo and in vitro. Oncotarget 7, 22116–22127 (2016).Article  PubMed  PubMed Central  Google Scholar Cao, A. L. et al. Ursodeoxycholic acid and 4-phenylbutyrate prevent endoplasmic reticulum stress-induced podocyte apoptosis in diabetic nephropathy. Lab. Invest. 96, 610–622 (2016).Article  CAS  PubMed  Google Scholar Carlisle, R. E. et al. 4-Phenylbutyrate inhibits tunicamycin-induced acute kidney injury via CHOP/GADD153 repression. PLoS ONE 9, e84663 (2014).Article  PubMed  PubMed Central  Google Scholar Yum, V. et al. Endoplasmic reticulum stress inhibition limits the progression of chronic kidney disease in the Dahl salt-sensitive rat. Am. J. Physiol. Renal Physiol 312, F230–F244 (2017).Article  CAS  PubMed  Google Scholar Shu, S. et al. Endoplasmic reticulum stress is activated in post-ischemic kidneys to promote chronic kidney disease. EBioMedicine 37, 269–280 (2018).Article  PubMed  PubMed Central  Google Scholar Jeon, J. H. et al. Chemical chaperones to inhibit endoplasmic reticulum stress: implications in diseases. Drug. Des. Devel Ther. 16, 4385–4397 (2022).Article  CAS  PubMed  PubMed Central  Google Scholar Junjappa, R. P., Patil, P., Bhattarai, K. R., Kim, H. R. & Chae, H. J. IRE1α implications in endoplasmic reticulum stress-mediated development and pathogenesis of autoimmune diseases. Front. Immunol. 9, 1289 (2018).Article  PubMed  PubMed Central  Google Scholar Wang, N. et al. Resveratrol protects against early polymicrobial sepsis-induced acute kidney injury through inhibiting endoplasmic reticulum stress-activated NF-κB pathway. Oncotarget 8, 36449–36461 (2017).Article  PubMed  PubMed Central  Google Scholar Yao, W. et al. IRE1α siRNA relieves endoplasmic reticulum stress-induced apoptosis and alleviates diabetic peripheral neuropathy in vivo and in vitro. Sci. Rep. 8, 2579 (2018).Article  PubMed  PubMed Central  Google Scholar The E-KCG. et al. Empagliflozin in patients with chronic kidney disease. N. Engl. J. Med. 388, 117–127 (2023).Article  Google Scholar Sun, H. L. et al. ACE-inhibitor suppresses the apoptosis induced by endoplasmic reticulum stress in renal tubular in experimental diabetic rats. Exp. Clin. Endocrinol. Diabetes 117, 336–344 (2009).Article  CAS  PubMed  Google Scholar Wang, W. et al. Protective effects of aliskiren and valsartan in mice with diabetic nephropathy. J. Renin Angiotensin Aldosterone Syst. 15, 384–395 (2014).Article  CAS  PubMed  Google Scholar Hartner, A. et al. Renal protection by low dose irbesartan in diabetic nephropathy is paralleled by a reduction of inflammation, not of endoplasmic reticulum stress. Biochim. Biophys. Acta 1842, 558–565 (2014).Article  CAS  PubMed  Google Scholar Shibusawa, R. et al. Dapagliflozin rescues endoplasmic reticulum stress-mediated cell death. Sci. Rep. 9, 9887 (2019).Article  PubMed  PubMed Central  Google Scholar Yuan, Y. et al. The roles of oxidative stress, endoplasmic reticulum stress, and autophagy in aldosterone/mineralocorticoid receptor-induced podocyte injury. Lab. Invest. 95, 1374–1386 (2015).Article  CAS  PubMed  Google Scholar Tangri, N. & Ferguson, T. W. Role of artificial intelligence in the diagnosis and management of kidney disease: applications to chronic kidney disease and acute kidney injury. Curr. Opin. Nephrol. Hypertens. 31, 283–287 (2022).Article  CAS  PubMed  Google Scholar Noh, M. R., Kim, J. I., Han, S. J., Lee, T. J. & Park, K. M. C/EBP homologous protein (CHOP) gene deficiency attenuates renal ischemia/reperfusion injury in mice. Biochim. Biophys. Acta 1852, 1895–1901 (2015).Article  CAS  PubMed  Google Scholar Rubenstein, R. C. & Zeitlin, P. L. A pilot clinical trial of oral sodium 4-phenylbutyrate (buphenyl) in ΔF508-homozygous cystic fibrosis patients: partial restoration of nasal epithelial CFTR function. Am. J. Respir. Crit. Care Med. 157, 484–490 (1998).Article  CAS  PubMed  Google Scholar Elia, A. E. et al. Tauroursodeoxycholic acid in the treatment of patients with amyotrophic lateral sclerosis. Eur. J. Neurol. 1, 45–52 (2016).Article  Google Scholar Sagel, S. C. et al. Clinical effectiveness of lumacaftor/ivacaftor in patients with cystic fibrosis homozygous for F508del-CFTR. a clinical trial. Ann. Am. Thorac. Soc. 18, 75–83 (2021).Article  PubMed  PubMed Central  Google Scholar Goralski, J. L. et al. Phase 3 open-label clinical trial of elexacaftor/tezacaftor/ivacaftor in children aged 2-5 years with cystic fibrosis and at least one F508del allele. Am. J. Respir. Crit. Care Med. 208, 59–67 (2023).Article  CAS  PubMed  PubMed Central  Google Scholar Maurer, M. S. et al. Tafamidis treatment for patients with transthyretin amyloid cardiomyopathy. N. Engl. J. Med. 379, 1007–1016 (2018).Article  CAS  PubMed  Google Scholar