Inhibition of tumor growth using A conjugated nanobody that specifically targets c-MYC

Wait 5 sec.

Dang CV. Myc on the path to cancer. Cell. 2012;149:22–35.Article  CAS  PubMed  PubMed Central  Google Scholar Schaub FX, Dhankani V, Berger AC, Trivedi M, Richardson AB, Shaw R, et al. Pan-cancer alterations of the myc oncogene and its proximal network across the cancer genome atlas. Cell Syst. 2018;6:282–300.Article  CAS  PubMed  PubMed Central  Google Scholar Wasylishen AR, Penn LZ. Myc: the beauty and the beast. Genes cancer. 2010;1:532–41.Article  CAS  PubMed  PubMed Central  Google Scholar Lin CY, Lovn J, Rahl PB, Paranal RM, Burge CB, Bradner JE, et al. Transcriptional amplification in tumor cells with elevated c-myc. Cell. 2012;151:56–67.Article  CAS  PubMed  PubMed Central  Google Scholar Di Giacomo S, Sollazzo M, Paglia S, Grifoni D. Myc, cell competition, and cell death in cancer: the inseparable triad. Genes. 2017;8:120.Article  PubMed  PubMed Central  Google Scholar Nau MM, Brooks BJ, Battey J, Sausville E, Gazdar AF, Kirsch IR, et al. L-myc, a new myc-related gene amplified and expressed in human small cell lung cancer. Nature. 1985;318:69–73.Article  CAS  PubMed  Google Scholar Zhou ZQ, Hurlin PJ. The interplay between mad and myc in proliferation and differentiation. Trends cell Biol. 2001;11:S10–S14.Article  CAS  PubMed  Google Scholar Bretones G, Delgado MD, Len J. Myc and cell cycle control. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms. 2015;1849:506–16.Article  CAS  PubMed  Google Scholar Llombart V, Mansour MR. Therapeutic targeting of undruggable MYC. EBioMedicine. 2022;75:103756.Article  PubMed  Google Scholar Gustafson W, Weiss W. Myc proteins as therapeutic targets. Oncogene. 2010;29:1249–59.Article  CAS  PubMed  PubMed Central  Google Scholar Mo H, Henriksson M. Identification of small molecules that induce apoptosis in a myc-dependent manner and inhibit myc-driven transformation. Proc Natl Acad Sci. 2006;103:6344–9.Article  CAS  PubMed  PubMed Central  Google Scholar Duffy MJ, O’Grady S, Tang M, Crown J. Myc as a target for cancer treatment. Cancer Treat Rev. 2021;94:102154.Article  CAS  PubMed  Google Scholar Delmore JE, Issa GC, Lemieux ME, Rahl PB, Shi J, Jacobs HM, et al. Bet bromodomain inhibition as a therapeutic strategy to target c-myc. Cell. 2011;146:904–17.Article  CAS  PubMed  PubMed Central  Google Scholar Raina K, Lu J, Qian Y, Altieri M, Gordon D, Rossi AMK, et al. Protac-induced bet protein degradation as a therapy for castration-resistant prostate cancer. Proc Natl Acad Sci. 2016;113:7124–9.Article  CAS  PubMed  PubMed Central  Google Scholar Crump NT, Ballabio E, Godfrey L, Thorne R, Repapi E, Kerry J, et al. Bet inhibition disrupts transcription but retains enhancer-promoter contact. Nat Commun. 2021;12:223.Article  CAS  PubMed  PubMed Central  Google Scholar Han H, Jain AD, Truica MI, Izquierdo-Ferrer J, Anker JF, Lysy B, et al. Small-molecule myc inhibitors suppress tumor growth and enhance immunotherapy. Cancer cell. 2019;36:483–97.Article  CAS  PubMed  PubMed Central  Google Scholar Berg T, Cohen SB, Desharnais J, Sonderegger C, Maslyar DJ, Goldberg J, et al. Small-molecule antagonists of myc/max dimerization inhibit myc-induced transformation of chicken embryo fibroblasts. Proc Natl Acad Sci. 2002;99:3830–5.Article  CAS  PubMed  PubMed Central  Google Scholar Amati B. Myc degradation: dancing with ubiquitin ligases. Proc Natl Acad Sci. 2004;101:8843–4.Article  CAS  PubMed  PubMed Central  Google Scholar Crawford LJ, Campbell DC, Morgan JJ, Lawson MA, Down JM, Chauhan D, et al. The e3 ligase huwe1 inhibition as a therapeutic strategy to target myc in multiple myeloma. Oncogene. 2020;39:5001–14.Article  CAS  PubMed  PubMed Central  Google Scholar Ross J, Miron CE, Plescia J, Laplante P, McBride K, Moitessier N, et al. Targeting myc: from understanding its biology to drug discovery. Eur J Med Chem. 2021;213:113137.Article  CAS  PubMed  Google Scholar Donati G, Amati B. Myc and therapy resistance in cancer: risks and opportunities. Mol Oncol. 2022;16:3828–54.Article  CAS  PubMed  PubMed Central  Google Scholar Wang E, Sorolla A, Cunningham PT, Bogdawa HM, Beck S, Golden E, et al. Tumor penetrating peptides inhibiting myc as a potent targeted therapeutic strategy for triple-negative breast cancers. Oncogene. 2019;38:140–50.Article  CAS  PubMed  Google Scholar Soucek L, Whitfield J, Martins CP, Finch AJ, Murphy DJ, Sodir NM, et al. Modelling myc inhibition as a cancer therapy. Nature. 2008;455:679–83.Article  CAS  PubMed  PubMed Central  Google Scholar Demma MJ, Mapelli C, Sun A, Bodea S, Ruprecht B, Javaid S. et al. Omomyc reveals new mechanisms to inhibit the myc oncogene. Mol Cellular Biol. 2019;39:00248–19.Article  Google Scholar Beaulieu ME, Jauset T, Mass-Valls D, Martnez-Martn S, Rahl P, Maltais L, et al. Intrinsic cell-penetrating activity propels omomyc from proof of concept to viable anti-myc therapy. Sci Transl Med. 2019;11:eaar5012.Article  PubMed  PubMed Central  Google Scholar Garralda E, Beaulieu ME, Moreno V, Casacuberta-Serra S, Martnez-Martn S, Foradada L, et al. Myc targeting by omo-103 in solid tumors: a phase 1 trial. Nat Med. 2024;30:762–71.Article  CAS  PubMed  PubMed Central  Google Scholar Muyldermans S. Nanobodies: natural single-domain antibodies. Annu Rev Biochem. 2013;82:775–97.Article  CAS  PubMed  Google Scholar Muyldermans S, Atarhouch T, Saldanha J, Barbosa J, Hamers R. Sequence and structure of vh domain from naturally occurring camel heavy chain immunoglobulins lacking light chains. Protein Eng Des Selection. 1994;7:1129–35.Article  CAS  Google Scholar Ji, F, Ren, J, Vincke, C, Jia, L, Muyldermans, S Nanobodies: From serendipitous discovery of heavy chain-only antibodies in camelids to a wide range of useful applications. In: Single-Domain Antibodies: Methods and Protocols. Springer. 2022:3-17.Daley-Bauer L, Purdy S, Smith M, Gagliardo L, Davis W, Appleton J. Contributions of conventional and heavy-chain igg to immunity in fetal, neonatal, and adult alpacas. Clin Vaccin Immunol. 2010;17:2007–15.Article  CAS  Google Scholar Conrath K, Wernery U, Muyldermans S, Nguyen VK. Emergence and evolution of functional heavy-chain antibodies in camelidae. Dev Comp Immunol. 2003;27:87–103.Article  CAS  PubMed  Google Scholar Atibalentja DF, Deutzmann A, Felsher DW. A big step for myc-targeted therapies. Trends Cancer. 2024;10:383–85.Article  CAS  PubMed  PubMed Central  Google Scholar Pooga M, Langel Ü. Classes of Cell-Penetrating Peptides. Methods Mol Biol. 2015;1324:3–28.Article  PubMed  Google Scholar Raucher D, Ryu JS. Cell-penetrating peptides: strategies for anticancer treatment. Trends Mol Med. 2015;21:560–70.Article  CAS  PubMed  Google Scholar Wolfe JM, Fadzen CM, Choo ZN, Holden RL, Yao M, Hanson GJ, et al. Machine learning to predict cell-penetrating peptides for antisense delivery. ACS Cent Sci. 2018;4:512–20.Article  CAS  PubMed  PubMed Central  Google Scholar Kadonosono T, Yamano A, Goto T. et al. Cell penetrating peptides improve tumor delivery of cargos through neuropilin-1-dependent extravasation. J Control Release. 2015;201:14–21.Article  CAS  PubMed  Google Scholar Yu S, Yang H, Li T, Pan H, Ren S, Luo G, et al. Efficient intracellular delivery of proteins by a multifunctional chimaeric peptide in vitro and in vivo. Nat Commun. 2021;12:5131.Article  CAS  PubMed  PubMed Central  Google Scholar Teo SL, Rennick JJ, Yuen D, Al-Wassiti H, Johnston AP, Pouton CW. Unravelling cytosolic delivery of cell penetrating peptides with a quantitative endosomal escape assay. Nat Commun. 2021;12:3721.Article  CAS  PubMed  PubMed Central  Google Scholar Kent, L Targeting then-myc oncoprotein using nanobody technology. Ph.D. thesis; University of Cambridge. 2018.Mundo L, Ambrosio MR, Raimondi F, Del Porro L, Guazzo R, Mancini V, et al. Molecular switch from myc to mycn expression in myc protein negative burkitt lymphoma cases. Blood Cancer J. 2019;9:91.Article  PubMed  PubMed Central  Google Scholar Wang C, Zhang J, Yin J, Gan Y, Xu S, Gu Y, et al. Alternative approaches to target myc for cancer treatment. Signal Transduct Target Ther. 2021;6:117.Article  CAS  PubMed  PubMed Central  Google Scholar Ingvarsson S. The myc gene family proteins and their role in transformation and differentiation. Semin Cancer Biol. 1990;1:359–69.CAS  PubMed  Google Scholar Theile CS, Witte MD, Blom AE, Kundrat L, Ploegh HL, Guimaraes CP. Site-specific n-terminal labeling of proteins using sortase-mediated reactions. Nat Protoc. 2013;8:1800–7.Article  PubMed  PubMed Central  Google Scholar Massa S, Vikani N, Betti C, Ballet S, Vanderhaegen S, Steyaert J, et al. Sortase a-mediated site-specific labeling of camelid single-domain antibody-fragments: a versatile strategy for multiple molecular imaging modalities. Contrast media Mol imaging. 2016;11:328–39.Article  CAS  PubMed  Google Scholar Zhu WL, Shin SY. Effects of dimerization of the cell-penetrating peptide tat analog on antimicrobial activity and mechanism of bactericidal action. J Pept Sci: Publ Eur Pept Soc. 2009;15:345–52.Article  CAS  Google Scholar Brooks H, Lebleu B, Vivs E. Tat peptide-mediated cellular delivery: back to basics. Adv drug Deliv Rev. 2005;57:559–77.Article  CAS  PubMed  Google Scholar Zhang H, Zhang Y, Zhang C, Yu H, Ma Y, Li Z, et al. Recent advances of cell-penetrating peptides and their application as vectors for delivery of peptide and protein-based cargo molecules. Pharmaceutics. 2023;15:2093.Article  CAS  PubMed  PubMed Central  Google Scholar Rosenblum D, Joshi N, Tao W, Karp JM, Peer D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat Commun. 2018;9:1410.Article  PubMed  PubMed Central  Google Scholar Hsiue EHC, Wright KM, Douglass J, Hwang MS, Mog BJ, Pearlman AH, et al. Targeting a neoantigen derived from a common tp53 mutation. Science. 2021;371:eabc8697.Article  CAS  PubMed  PubMed Central  Google Scholar Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science. 2015;348:69–74.Article  CAS  PubMed  Google Scholar Pearlman AH, Hwang MS, Konig MF, Hsiue EHC, Douglass J, DiNapoli SR, et al. Targeting public neoantigens for cancer immunotherapy. Nat cancer. 2021;2:487–97.Article  CAS  PubMed  PubMed Central  Google Scholar