資料、筆記之間最好的「連結」關係是「任務」,而不是屬性、相關性,這也是在 AI 時代擁有大量自動分析資料工具後, AI 依然無法為我們代勞的整理技巧。也是幫助你不再努力分類、標籤、連結後,還是出現「用不到」、「找不到」、「只是蒐集沒在用」的狀況。近期我在電腦玩物分享的這篇文章,也闡述了類似想法:「AI 時代建立筆記系統的關鍵是「任務/經驗」而非「資料/知識」」AI 或許可以幫大量資料下關鍵字,自動建立類似維基百科那樣的相關性連結,但 AI 無法幫我決定這個資料用在什麼任務上。在還沒有生成式 AI 爆發的時代,我在《防彈筆記法》書籍裡就開始強調真正的數位第二大腦整理是以「任務的連結」為中心(資料連結是不太重要的弱連結,任務連結才是真正有用的強連結:Evernote 實踐 Zettelkasten 卡片盒筆記法,整理知識網路系統),而現在進入了AI時代,我更加認為「以任務為整理中心的連結方式」才是建構高效率第二大腦的關鍵,而這個步驟需要人來做。為什麼要讓資料任務化?兩個層次的思考:在我的防彈筆記法課程中,常常會分享一個自己收集資料的原則(參考:別怕失去什麼,看到好像不錯、好像有用的資料,最好不要收集):每次看到一個好像不錯,有點意思的文章,我會問自己一個問題:「近期內哪個任務用得到?」然後用任務導向的原則,把資料連結到用得到的那則「任務筆記」。如果當這個核心的問句得不到解答的時候,我會選擇「放下這個資料」。不過之前主要都是分享:不要收集不必要資料,問題是:那如何能夠有效地把資料「任務化」呢?最近一次課程中,有學員在下課時跑來問我上述問題。他說自己是工程師,平常也很喜歡閱讀學習大量新資訊,有很多時候看到一些覺得好像不錯的內容,但是當下似乎很難去思考什麼任務要用?這時候應該怎麼辦才好呢?我當下提供了兩個層次的想法來回答他:第一個層次是:練習建立第二大腦的「核心邏輯」轉換,勇敢放下資料是節省更多時間以前在收集各種資料的過程當中,常常只是為了收集而收集,在資料的層次做處理,打造了一個花時間卻不一定能夠準確拿出來使用的系統,並且誤以為是要花更多時間整理,才能有效取出資料來使用。其實,我們應該轉換的是自己的收集邏輯,透過提問:「這是哪一個任務可以用的資料?」而非這是什麼資料?可以有效過濾自己需要收集整理的內容,這是跨出有效整理系統的第一步。當然,這個過程不會盡善盡美,但也不需要完美。在這樣的練習當中,或許我還是會收集到一些最後都用不到的資料,但一定也會增加跟明確任務連結的資料比例,而這樣我們的系統就會變得比之前更加有用。如果在這個核心邏輯轉換時,發現很多看到的新資料都找不到可以連結的任務,那麼或許我們應該勇敢地告訴自己:「因為這就是現在的自己不需要的資料,放下他們,讓我去處理真正任務,這樣我可以獲得更多時間與成果。」第二個層次是:練習「以輸出為目的」,而非輸入,我的任務是我自己可以設計的很多時候我們看到有感覺的資訊,自己當下沒有任何任務用得到,但又很想收集,覺得無法實踐以任務為導向的整理系統?或者認為,如果都不收集任務以外的新資訊,那我們要如何成長?如何跨出舒適圈?如何擴展自己的多領域能力呢?這其實忽略了一個關鍵的重點:那就是任何我要執行的任務,其實是我們自己可以主動設計出來的!任務,並非只能是別人給我們的。簡單的說,如果我看到一個非常棒的資訊,很想要收集,但這時候在既有的任務中沒有任何連結,那麼我應該反問自己:「我可不可以為這個新知識建立一個有任務成果的新任務呢?」大家現在應該都認同,輸入的目的是為了要輸出,成果是比資料整理更有效的工作系統。所以我們不需要去整理那些資料跟知識,應該是要問:我要如何整理才能夠有效的產出任務成果?而這時候我可以主動為蒐集的資訊設計一個新的成果,讓這個整理學習的過程真正有所產出。下面我就分享實例,看看在打造數位第二大腦系統的過程當中,我如何把日常收集的資訊任務化,讓大家更能夠掌握住我所說的這兩個層次:資料要跟任務進行連結,不用花很多時間整理,這些資料以後會被真正的拿出來使用。為自己非常喜歡的知識主動設計任務成果,開啟產出,才是打造第二大腦的方式。我的具體實踐案例步驟一:如何把資料連結到任務?下面是一個最近真實發生的例子。每天網路上都有很多人推薦許多新的 AI 方法或工具。有一天我看到了一個 AI 設計圖像的工具,看起來這個工具非常厲害,我動了想要蒐集這個資料的念頭。這時候我就問自己一個問題:最近我有沒有哪一個任務有機會用到這個 AI 設計圖像工具呢?於是我在腦袋中快速運轉近期的生活、工作,有哪些正在進行中的任務?我想到接下來剛好要去一個學校分享小講座,我想到正好可以利用這個機會試試看這個 AI 設計工具,設計出一些吸睛、有趣的圖像,作為這堂比較輕鬆主題講座的圖像輔助。於是我把這個資料擷取下來之後,將其連結到那堂講座的任務筆記。接下來,我不會針對這個 AI 設計工具資料去做任何的額外整理、分類或者標籤,因為我已經把資料連結到那堂學校講座的任務筆記了,等到學校講座要開始前,我打開那個任務筆記準備開始處理講座內容時,自然就會看到現在連結過去的這一則 AI 設計工具的資料。於是我就會想起來,並且有機會利用這個工具來處理講座上的圖像,經過這樣的產出經驗,或許到時候就會更加掌握這個設計工具的功能,如果發現值得介紹,說不定還會再衍生出一篇電腦玩物上的寫作任務。如果你常常看到我在電腦玩物上分享很多我的真實工作生活任務案例,也發現我常常研究很多新的工具、新的方法,你懷疑我為什麼不會覺得自己資訊爆炸?而且有餘力處理這麼多新資訊?那麼大多都是在上述的整理流程裡,建立起幫我去蒐集資料,並且有效利用資料的第二大腦過程。我的具體實踐案例步驟二:放下任務不需要的資料也是最近的真實例子,看到網路上很多人介紹許多愈來愈厲害的 AI 影片生成工具,我有興趣,但依然先用前面的邏輯想想看:有沒有哪一個任務用得到?這時候,我當下想不到任何工作、生活任務可以用這個工具來解決什麼問題,要怎麼辦呢?這時候我的建議是(也是我真實做法):那就放下這個資料,連擷取蒐集都不要。完全省下整理這些資訊的時間。為什麼呢?有幾個原因。第一個原因,收集過多自己沒有真正任務產出的資料,導致自己要花更多時間做資料的整理,這本身就是一件浪費時間的事情。第二個原因,收集過多跟任務不相關的資料,導致自己分心去研究它們,這常常是讓自己在工作生活中無法聚焦在真正目標的關鍵原因。如果我們沉迷於資料收集、稍後閱讀,反而讓我們在資訊爆炸的過程當中,感覺更加茫無頭緒,分心在各種互不相關的資訊上。這其實是許多朋友建立第二大腦的最大困境:收集整理時間 > 實際產出時間還有第三個新原因,在這個AI時代,當我們任務真正需要什麼資料時,利用 AI 深度研究,當下蒐集整理最新資訊,或許是更好的資料整理方法。(延伸教學:先用 Deep Research 掃清認知盲區,再用 Google 搜尋,我的 6 種學習新流程)AI 工具的進化,確實改變了許多事情,我們應該重新思考自己建立第二大腦的邏輯。如果我在沒有任何任務需要的時候蒐集一個 AI 影片製作工具資訊,花時間整理他,但是放在那天幾個月都沒有使用?之後,終於有新任務需要 AI 影片製作工具了,你覺得,現在我們要把之前那則資料找回來用嗎?但是,它已經是幾個月前的工具了,會不會這時候有更新更好的 AI 影片設計工具出現呢?那我還不如去找這個當下更新更好的 AI 影片設計工具?所以從上述的幾個理由來看,我們都會發現,當我們看到一個資訊,而我們無法跟任何任務筆記連結的時候,放下它,其實反而是一個提升生產力的選擇。我的具體實踐案例步驟三:那學習成長、擴充知識圈怎麼辦?來到這一步,有朋友覺得如果只是因為無法跟當下任何的任務進行連結,我就放下它?這樣一來會不會很可惜?二來會不會失去了自己學習成長的空間?如果用 Esor 分享的「防彈筆記法」,以任務為導向,會不會反而會變成一個無法成長?只能原地踏步解決目前工作任務的人呢?這其實是對這個系統最大的誤解,說任務成果一定要是既有的,或者是別人給予的呢?難道我不能主動設計任務產出嗎?當我看到一個資料非常有用,而我無法跟任何現存任務進行連結的時候,我可不可以自己為它設計一個有動力、有興趣、有價值的任務成果產出呢?這樣一來,我既不會讓資料整理流於空泛,我也可以有效地去學習接觸新的領域,但又保證了有價值的任務成果產出。例如前一陣子我看到很多人在介紹 Vibe Coding 這個概念,那時候有 Cursor 這個工具,後來 ChatGPT 在它的 Plus 以上版本也推出了 Codex 這個 AI 幫你寫程式碼、分析程式碼專案的服務。那段時間我不斷看到這類介紹,其中有一兩篇寫得很棒,分析了如何更有效 Vibe Coding 的流程。我很想把這個資料收集下來,也很有興趣,但是那個當下,我無法跟既有的任何專案任務進行連結,因為一來我不是工程師,平常不需要寫程式;二來我當下的任何任務並沒有需要開發網站或者開發某個工具的需求。但是最後我還是收集了教我如何 Vibe Coding 的工具與方法資料,但我不是只有收集,而是重新為它設計一個任務成果:「開發一個個人筆記/日記系統」。剛好那時候我也同時很想用 AI 來幫小孩寫他感興趣的兒童故事,我想把這個寫作流程用一個自己設計的日記軟體記錄下來,可以整理寫作創意、構思流程。於是我把「只是感興趣」的資料,轉化成「真正試試看的任務」。目前已經執行一個月的時間,逐步開發出日記軟體,目前具備可以追蹤寫作日誌、做搜尋、連結、標籤等等功能,滿足我需要的所有靈感想法整理,也挑戰看看如果在我完全不懂程式碼的情況下,用 Vibe Coding 可以做到什麼程度。在這個月的過程中,當時那個感興趣的資料,不再只是資料,而是真的變成我理解一個新領域的經驗!我真的開發出了一個自己可用的日記軟體,我也第一次比較完整的學到了所謂的軟體開發流程、開發工具,我大致上知道 GitHub 如何管理,這些都是擴展了我原本並不熟悉的領域,也具體完成了一個對我有價值的成果。所以,當我們真的對某個資訊感興趣,更應該主動設計產出,這才是真正跨出領域、學習成長的方式。而如果連任務產出都設計不出來,變成單純只是收集資料,那麼放棄其實也真的沒有什麼影響。(延伸閱讀:筆記如何變成有效記憶?建立一個任務流程,而非知識庫)看完上面的資料處理流程,或許你也可以試試看我的方法:收集資料時要馬上任務化:而不是先囤積再說,透過「先問自己這個資料會應用在哪個任務上」的檢查點,不只是省下整理時間,更能推進真正有產出的行動。如果沒有現成的任務,也可以自己創造任務:很多人以為任務一定是別人交辦或現成的,其實我們可以為感興趣的新知主動設計一個「任務產出」來驗證和學習。當你找不到對應任務,就勇敢放棄那些資訊:「放下」其實是最高效的選擇,不必因為資訊 FOMO(錯失恐懼)讓自己失焦。大家好,我是電腦玩物站長 Esor ,歡迎參考我的系列課程與書籍:2024/6 最新著作上市,歡迎支持:《高效人生工作法圖解》「個人數位生產力」線上課程(可使用電腦玩物老讀者折扣碼 ESOR500 ,獲得 500 元折價喔!)。時間管理、筆記系統、AI 工具相關課程:「課程介紹連結」著作:《防彈筆記法》訂閱追蹤 podcast 節目:「高效人生商學院」(Apple podcast 訂閱、 Google Podcast 訂閱)訂閱「電腦玩物電子報」,不定期出刊。我的電子郵件是 esorhjy@gmail.com ,如果你有任何關於筆記術、時間管理、提升工作效率的問題,歡迎寫信跟我討論。(歡迎社群分享。但全文轉載請來信詢問,禁止修改上述內文,禁止商業使用,並且必須註明來自電腦玩物原創作者 esor huang 異塵行者,及附上原文連結:收集資料時 3 步驟「任務化」!AI 工具取代不了的整理技巧教學)