Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72:7–33.PubMed Google Scholar Ansari D, Tingstedt B, Andersson B, Holmquist F, Sturesson C, Williamsson C, et al. Pancreatic cancer: yesterday, today and tomorrow. Future Oncol. 2016;12:1929–46.CAS PubMed Google Scholar Esteller M, Dawson MA, Kadoch C, Rassool FV, Jones PA, Baylin SB. The Epigenetic Hallmarks of Cancer. Cancer Discov. 2024;14:1783–809.CAS PubMed Google Scholar Roberts NJ, Norris AL, Petersen GM, Bondy ML, Brand R, Gallinger S, et al. Whole Genome Sequencing Defines the Genetic Heterogeneity of Familial Pancreatic Cancer. Cancer Discov. 2016;6:166–75.CAS PubMed Google Scholar Solomon S, Das S, Brand R, Whitcomb DC. Inherited pancreatic cancer syndromes. Cancer J. 2012;18:485–91.CAS PubMed PubMed Central Google Scholar Bailey P, Chang DK, Nones K, Johns AL, Patch AM, Gingras MC, et al. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature. 2016;531:47–52.CAS PubMed Google Scholar Li Y, He Y, Peng J, Su Z, Li Z, Zhang B, et al. Mutant Kras co-opts a proto-oncogenic enhancer network in inflammation-induced metaplastic progenitor cells to initiate pancreatic cancer. Nat Cancer. 2021;2:49–65.CAS PubMed Google Scholar Alonso-Curbelo, Ho D, Burdziak YJ, Maag C, Morris JLV, JPt, et al. A gene-environment-induced epigenetic program initiates tumorigenesis. Nature. 2021;590:642–8.CAS PubMed PubMed Central Google Scholar Del Poggetto E, Ho IL, Balestrieri C, Yen EY, Zhang S, Citron F, et al. Epithelial memory of inflammation limits tissue damage while promoting pancreatic tumorigenesis. Science. 2021;373:eabj0486.PubMed PubMed Central Google Scholar Murthy D, Attri KS, Shukla SK, Thakur R, Chaika NV, He C, et al. Cancer-associated fibroblast-derived acetate promotes pancreatic cancer development by altering polyamine metabolism via the ACSS2-SP1-SAT1 axis. Nat Cell Biol. 2024;26:613–27.CAS PubMed PubMed Central Google Scholar Nagy Z, Riss A, Fujiyama S, Krebs A, Orpinell M, Jansen P, et al. The metazoan ATAC and SAGA coactivator HAT complexes regulate different sets of inducible target genes. Cell Mol Life Sci. 2010;67:611–28.CAS PubMed Google Scholar Mi W, Guan H, Lyu J, Zhao D, Xi Y, Jiang S, et al. YEATS2 links histone acetylation to tumorigenesis of non-small cell lung cancer. Nat Commun. 2017;8:1088.PubMed PubMed Central Google Scholar Yayli G, Bernardini A, Mendoza Sanchez PK, Scheer E, Damilot M, Essabri K, et al. ATAC and SAGA co-activator complexes utilize co-translational assembly, but their cellular localization properties and functions are distinct. Cell Rep. 2023;42:113099.CAS PubMed PubMed Central Google Scholar Wang YL, Faiola F, Xu M, Pan S, Martinez E. Human ATAC Is a GCN5/PCAF-containing acetylase complex with a novel NC2-like histone fold module that interacts with the TATA-binding protein. J Biol Chem. 2008;283:33808–15.CAS PubMed PubMed Central Google Scholar Goppelt A, Stelzer G, Lottspeich F, Meisterernst M. A mechanism for repression of class II gene transcription through specific binding of NC2 to TBP-promoter complexes via heterodimeric histone fold domains. EMBO J. 1996;15:3105–16.CAS PubMed PubMed Central Google Scholar Yang M, Waterman ML, Brachmann RK. hADA2a and hADA3 are required for acetylation, transcriptional activity and proliferative effects of beta-catenin. Cancer Biol Ther. 2008;7:120–8.CAS PubMed Google Scholar Malatesta M, Steinhauer C, Mohammad F, Pandey DP, Squatrito M, Helin K. Histone acetyltransferase PCAF is required for Hedgehog-Gli-dependent transcription and cancer cell proliferation. Cancer Res. 2013;73:6323–33.CAS PubMed Google Scholar Burdziak C, Alonso-Curbelo D, Walle T, Reyes J, Barriga FM, Haviv D, et al. Epigenetic plasticity cooperates with cell-cell interactions to direct pancreatic tumorigenesis. Science. 2023;380:eadd5327.CAS PubMed PubMed Central Google Scholar Lomberk G, Dusetti N, Iovanna J, Urrutia R. Emerging epigenomic landscapes of pancreatic cancer in the era of precision medicine. Nat Commun. 2019;10:3875.PubMed PubMed Central Google Scholar Wu Y, Seufert I, Al-Shaheri FN, Kurilov R, Bauer AS, Manoochehri M, et al. DNA-methylation signature accurately differentiates pancreatic cancer from chronic pancreatitis in tissue and plasma. Gut. 2023;72:2344–53.CAS PubMed Google Scholar Doench JG, Fusi N, Sullender M, Hegde M, Vaimberg EW, Donovan KF, et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol. 2016;34:184–91.CAS PubMed PubMed Central Google Scholar Liu X, Liu X, Du Y, Zou D, Tian C, Li Y, et al. Aberrant accumulation of Kras-dependent pervasive transcripts during tumor progression renders cancer cells dependent on PAF1 expression. Cell Rep. 2023;42:112979.CAS PubMed Google Scholar Liu X, Guo Z, Han J, Peng B, Zhang B, Li H, et al. The PAF1 complex promotes 3’ processing of pervasive transcripts. Cell Rep. 2022;38:110519.CAS PubMed Google Scholar Yeung KC, Inostroza JA, Mermelstein FH, Kannabiran C, Reinberg D. Structure-function analysis of the TBP-binding protein Dr1 reveals a mechanism for repression of class II gene transcription. Genes Dev. 1994;8:2097–109.CAS PubMed Google Scholar Christova R, Oelgeschlager T. Association of human TFIID-promoter complexes with silenced mitotic chromatin in vivo. Nat Cell Biol. 2002;4:79–82.CAS PubMed Google Scholar Gunesdogan U, Jackle H, Herzig A. Histone supply regulates S phase timing and cell cycle progression. Elife. 2014;3:e02443.PubMed PubMed Central Google Scholar Han M, Chang M, Kim UJ, Grunstein M. Histone H2B repression causes cell-cycle-specific arrest in yeast: effects on chromosomal segregation, replication, and transcription. Cell. 1987;48:589–97.CAS PubMed Google Scholar Mejlvang J, Feng Y, Alabert C, Neelsen KJ, Jasencakova Z, Zhao X, et al. New histone supply regulates replication fork speed and PCNA unloading. J Cell Biol. 2014;204:29–43.CAS PubMed PubMed Central Google Scholar Li B, Ren N, Yang L, Liu J, Huang Q. A qPCR method for genome editing efficiency determination and single-cell clone screening in human cells. Sci Rep. 2019;9:18877.CAS PubMed PubMed Central Google Scholar Shi J, Wang E, Milazzo JP, Wang Z, Kinney JB, Vakoc CR. Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains. Nat Biotechnol. 2015;33:661–7.CAS PubMed PubMed Central Google Scholar Henikoff S, Zheng Y, Paranal RM, Xu Y, Greene JE, Henikoff JG, et al. RNA polymerase II at histone genes predicts outcome in human cancer. Science. 2025;387:737–43.CAS PubMed PubMed Central Google Scholar Inostroza JA, Mermelstein FH, Ha I, Lane WS, Reinberg D. Dr1, a TATA-binding protein-associated phosphoprotein and inhibitor of class II gene transcription. Cell. 1992;70:477–89.CAS PubMed Google Scholar Kamada K, Shu F, Chen H, Malik S, Stelzer G, Roeder RG, et al. Crystal structure of negative cofactor 2 recognizing the TBP-DNA transcription complex. Cell. 2001;106:71–81.CAS PubMed Google Scholar Zhao D, Guan H, Zhao S, Mi W, Wen H, Li Y, et al. YEATS2 is a selective histone crotonylation reader. Cell Res. 2016;26:629–32.CAS PubMed PubMed Central Google Scholar Fischer V, Plassard D, Ye T, Reina-San-Martin B, Stierle M, Tora L, et al. The related coactivator complexes SAGA and ATAC control embryonic stem cell self-renewal through acetyltransferase-independent mechanisms. Cell Rep. 2021;36:109598.Kurat CF, Lambert JP, Petschnigg J, Friesen H, Pawson T, Rosebrock A, et al. Cell cycle-regulated oscillator coordinates core histone gene transcription through histone acetylation. Proc Natl Acad Sci USA. 2014;111:14124–9.CAS PubMed PubMed Central Google Scholar Tang J, Hu M, Lee S, Roblin R. Primer mixture enhances PCR detection of Mycoplasma/Acholeplasma contaminants in cell cultures. Vitro Cell Dev Biol Anim. 1999;35:1–3.CAS Google Scholar Dobin A, Gingeras TR. Mapping RNA-seq Reads with STAR. Curr Protoc Bioinforma. 2015;51:11.14.11–11.14.19.Google Scholar Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–9.PubMed PubMed Central Google Scholar Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–30.CAS PubMed Google Scholar Ramírez F, Ryan DP, Grüning B, Bhardwaj V, Kilpert F, Richter AS, et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 2016;44:W160–165.PubMed PubMed Central Google Scholar Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun. 2019;10:1523.PubMed PubMed Central Google Scholar Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.CAS PubMed PubMed Central Google Scholar Download references