van Dongen, J. E. & Segerink, L. I. Building the future of clinical diagnostics: an analysis of potential benefits and current barriers in CRISPR/Cas diagnostics. ACS Synth. Biol. 14, 323–331 (2025).Article CAS PubMed PubMed Central Google Scholar Lubbers, B. R. et al. The new EU regulation on in vitro diagnostic medical devices: Implications and preparatory actions for diagnostic laboratories. HemaSphere 5, e568 (2021).Article PubMed PubMed Central Google Scholar Kaminski, M. M., Abudayyeh, O. O., Gootenberg, J. S., Zhang, F. & Collins, J. J. CRISPR-based diagnostics. Nat. Biomed. Eng. 5, 643–656 (2021).Article CAS PubMed Google Scholar Hu, T. & Chen, X. Nano for CRISPR. ACS Nano 16, 8505–8506 (2022).Article CAS Google Scholar Chowdhry, R. et al. Enhancing CRISPR/Cas systems with nanotechnology. Trends Biotechnol. 41, 1549–1564 (2023).Article CAS PubMed Google Scholar Yu, E. S. et al. Highly efficient on-chip photothermal cell lysis for nucleic acid extraction using localized plasmonic heating of strongly absorbing Au nanoislands. ACS Appl. Mater. Interfaces 15, 34323–34331 (2023).Article CAS PubMed PubMed Central Google Scholar Marcuccio, F. et al. Single-cell nanobiopsy enables multigenerational longitudinal transcriptomics of cancer cells. Sci. Adv. 10, 515 (2024).Article Google Scholar Yang, B., Kong, J. & Fang, X. Programmable CRISPR-Cas9 microneedle patch for long-term capture and real-time monitoring of universal cell-free DNA. Nat. Commun. 13, 3999 (2022).Article CAS PubMed PubMed Central Google Scholar Jeong, S. et al. Extraction of viral nucleic acids with carbon nanotubes increases SARS-CoV-2 quantitative reverse transcription polymerase chain reaction detection sensitivity. ACS Nano 15, 10309–10317 (2021). This study proposed high-yield capture of viral RNA from 50% human saliva using ssDNA attached to carbon nanotubes, thereby bypassing commercial kits and biofluid purification steps.Article CAS PubMed PubMed Central Google Scholar Bogers, J. F. M. et al. Bright fluorescent nucleic acid detection with CRISPR-Cas12a and poly(thymine) templated copper nanoparticles. Biol. Methods Protoc. 6, bpaa020 (2021).Article PubMed Google Scholar Song, J. et al. Elution-free DNA detection using CRISPR/Cas9-mediated light-up aptamer transcription: toward all-in-one DNA purification and detection tube. Biosens. Bioelectron. 225, 115085 (2023).Article CAS PubMed Google Scholar Zhou, W. et al. A CRISPR–Cas9-triggered strand displacement amplification method for ultrasensitive DNA detection. Nat. Commun. 9, 5012 (2018).Article PubMed PubMed Central Google Scholar Mohsenin, H. et al. Signal-amplifying biohybrid material circuits for CRISPR/Cas-based single-stranded RNA detection. Adv. Mater. Technol. 10, 2400981 (2024).Zhang, S., Xu, D., Li, F. & Wang, J. CRISPR-based non-nucleic acid detection. Trends Biotechnol. https://doi.org/10.1016/J.TIBTECH.2025.04.012 (2025).Liu, Z. et al. Determination of adenosine by CRISPR-Cas12a system based on duplexed aptamer and molecular beacon reporter linked to gold nanoparticles. Microchim. Acta 190, 173 (2023).Article CAS Google Scholar Zhang, Q. et al. Controllable assembly of a quantum dot-based aptasensor guided by CRISPR/Cas12a for direct measurement of circulating tumor cells in human blood. Nano Lett. 24, 2360–2368 (2024).Article CAS PubMed Google Scholar Chen, Y. et al. Applying CRISPR/Cas system as a signal enhancer for DNAzyme-based lead ion detection. Anal. Chim. Acta https://doi.org/10.1016/j.aca.2021.339356 (2021).Wu, Z., Sun, D. W., Pu, H. & Wei, Q. A novel fluorescence biosensor based on CRISPR/Cas12a integrated MXenes for detecting Aflatoxin B1. Talanta 252, 123773 (2023).Article CAS PubMed Google Scholar Hao, L. et al. CRISPR-Cas-amplified urinary biomarkers for multiplexed and portable cancer diagnostics. Nat. Nanotechnol. 18, 798–807 (2023). This study presented a non-invasive, multiplexed approach for cancer detection and monitoring, combining peptide-conjugated synthetic or biological nanocarriers with a novel DNA barcoding system.Article CAS PubMed PubMed Central Google Scholar Pandit, S., Duchow, M., Chao, W., Capasso, A. & Samanta, D. DNA-barcoded plasmonic nanostructures for activity-based protease sensing. Angew. Chem. Int. Ed. 63, e202310964 (2024).Article CAS Google Scholar Welch, N. L. et al. Multiplexed CRISPR-based microfluidic platform for clinical testing of respiratory viruses and identification of SARS-CoV-2 variants. Nat. Med. 28, 1083–1094 (2022). This study proposed a highly multiplexed microfluidic platform for the rapid detection of SARS-CoV-2 variants with a classification accuracy comparable to sequencing.Article CAS PubMed PubMed Central Google Scholar Tian, T. et al. An ultralocalized Cas13a assay enables universal and nucleic acid amplification-free single-molecule RNA diagnostics. ACS Nano 15, 1167–1178 (2021).Article CAS PubMed Google Scholar Chen, J. et al. CRISPR-powered optothermal nanotweezers: diverse bio-nanoparticle manipulation and single nucleotide identification. Light. Sci. Appl. 12, 273 (2023).Article CAS PubMed PubMed Central Google Scholar Yuan, A. et al. RNA-activated CRISPR/Cas12a nanorobots operating in living cells. J. Am. Chem. Soc. https://doi.org/10.1021/JACS.4C02354 (2024). This study presented Cas12a-based nanorobots for the real-time detection of microRNAs in living cells, paving the way for advanced intracellular monitoring and therapeutic applications.Yuan, C. et al. Universal and naked-eye gene detection platform based on the clustered regularly interspaced short palindromic repeats/Cas12a/13a system. Anal. Chem. 92, 4029–4037 (2020).Article CAS PubMed Google Scholar López-Valls, M. et al. CASCADE: naked eye-detection of SARS-CoV-2 using Cas13a and gold nanoparticles. Anal. Chim. Acta 1205, 339749 (2022).Article PubMed PubMed Central Google Scholar Broughton, J. P. et al. CRISPR–Cas12-based detection of SARS-CoV-2. Nat. Biotechnol. https://doi.org/10.1038/s41587-020-0513-4 (2020).MacGregor, S. R. et al. Development of CRISPR/Cas13a-based assays for the diagnosis of Schistosomiasis. EBioMedicine 94, 104730 (2023).Article CAS PubMed PubMed Central Google Scholar Zhang, X., Yang, Y., Cao, J., Qi, Z. & Li, G. Point‐of‐care CRISPR/Cas biosensing technology: a promising tool for preventing the possible COVID‐19 resurgence caused by contaminated cold‐chain food and packaging. Food Front. 4, 207–232 (2023).Article Google Scholar Moon, J. et al. Colorimetric detection of SARS-CoV-2 and drug-resistant pH1N1 using CRISPR/dCas9. ACS Sens. 5, 4017–4026 (2020).Article CAS PubMed Google Scholar Samanta, D., Ebrahimi, S. B., Ramani, N. & Mirkin, C. A. Enhancing CRISPR-Cas-mediated detection of nucleic acid and non-nucleic acid targets using enzyme-labeled reporters. J. Am. Chem. Soc. 144, 16310–16315 (2022).Article CAS PubMed Google Scholar Huang, D., Ni, D. S., Fang, M., Shi, Z. & Xu, Z. Microfluidic ruler-readout and CRISPR Cas12a-responded hydrogel-integrated paper-based analytical devices (μReaCH-PAD) for visible quantitative point-of-care testing of invasive fungi. Anal. Chem. 93, 16965–16973 (2021).Article CAS PubMed Google Scholar Johnston, M. et al. Multiplexed biosensor for point-of-care COVID-19 monitoring: CRISPR-powered unamplified RNA diagnostics and protein-based therapeutic drug management. Mater. Today 61, 129–138 (2022). This study introduced a CRISPR-powered, amplification-free technology for monitoring viral RNA alongside antibiotic concentrations, offering a sensitive solution for pandemic response.Article CAS Google Scholar Tao, X. et al. Sensitive and on-site detection of Staphylococcus aureus based on CRISPR/Cas 13a-assisted chemiluminescence resonance energy transfer. Anal. Chem. 96, 9270–9277 (2024).Article CAS PubMed Google Scholar Shamsabadi, A., Haghighi, T., Carvalho, S., Frenette, L. C. & Stevens, M. M. The nanozyme revolution: enhancing the performance of medical biosensing platforms. Adv. Mater. 36, 2300184 (2024). This review explored the potential of nanozymes to improve medical biosensing platforms by improving signal amplification and enhancing detection limits.Article CAS Google Scholar Broto, M. et al. Nanozyme-catalysed CRISPR assay for preamplification-free detection of non-coding RNAs. Nat. Nanotechnol. 17, 1120–1126 (2022). This study introduced CrisprZyme, a nanozyme-linked immunosorbent assay that enables preamplification-free, quantitative detection of non-coding RNAs in both plate- and paper-based assay formats.Article CAS PubMed PubMed Central Google Scholar Arshad, F., Abdillah, A. N., Shivanand, P. & Ahmed, M. U. CeO2 nanozyme mediated RPA/CRISPR-Cas12a dual-mode biosensor for detection of invA gene in Salmonella. Biosens. Bioelectron. 247, 115940 (2024).Article CAS PubMed Google Scholar An, P. et al. CRISPR/Cas12a bio-assay integrated with metal-organic framework based enhanced fluorescent labels for ultrasensitive detection of circulating tumor DNA. Sens. Actuat. B 383, 133623 (2023).Article CAS Google Scholar Hong, S. et al. A non-FRET DNA reporter that changes fluorescence colour upon nuclease digestion. Nat. Nanotechnol. 19, 810–817 (2024). This study introduced a low-cost, DNA-templated, Ag-nanocluster-based reporter for nucleic acid detection that changes colour upon CRISPR digestion.Article CAS PubMed PubMed Central Google Scholar Fu, X. et al. Exploring the trans-cleavage activity of CRISPR/Cas12a on gold nanoparticles for stable and sensitive biosensing. Anal. Chem. 93, 4967–4974 (2021).Article CAS PubMed Google Scholar Luo, T. et al. Designing a CRISPR/Cas12a- and Au-nanobeacon-based diagnostic biosensor enabling direct, rapid, and sensitive miRNA detection. Anal. Chem. 94, 6566–6573 (2022).Article CAS PubMed Google Scholar Green, C. M. et al. Quantum dot-based molecular beacons for quantitative detection of nucleic acids with CRISPR/Cas(N) nucleases. ACS Nano 16, 20693–20704 (2022). This study presented fluorescently labelled DNA or RNA hairpins conjugated to ZnS-coated quantum dots that form ratiometric reporters for FRET-based detection of DNA and RNA.Article CAS PubMed Google Scholar Zhang, Q. et al. SARS-CoV-2 detection using quantum dot fluorescence immunochromatography combined with isothermal amplification and CRISPR/Cas13a. Biosens. Bioelectron. 202, 113978 (2022).Article CAS PubMed PubMed Central Google Scholar Li, C. Y. et al. A boosting upconversion luminescent resonance energy transfer and biomimetic periodic chip integrated CRISPR/Cas12a biosensor for functional DNA regulated transduction of non-nucleic acid targets. Biosens. Bioelectron. 169, 112650 (2020).Article CAS PubMed Google Scholar Guan, L. et al. Ultrasensitive miRNA detection based on magnetic upconversion nanoparticle enhancement and CRISPR/Cas13a-driven signal amplification. Anal. Chem. 95, 17708–17715 (2023).Article CAS PubMed Google Scholar Giesselmann, P. et al. Analysis of short tandem repeat expansions and their methylation state with nanopore sequencing. Nat. Biotechnol. 37, 1478–1481 (2019).Article CAS PubMed Google Scholar Gilpatrick, T. et al. Targeted nanopore sequencing with Cas9-guided adapter ligation. Nat. Biotechnol. 38, 433–438 (2020).Article CAS PubMed PubMed Central Google Scholar McDonald, T. L. et al. Cas9 targeted enrichment of mobile elements using nanopore sequencing. Nat. Commun. 12, 3586 (2021).Article CAS PubMed PubMed Central Google Scholar Liu, M. et al. A label-free photoelectrochemical biosensor based on CRISPR/Cas12a system responsive deoxyribonucleic acid hydrogel and ‘click’ chemistry. ACS Sens. 7, 3153–3160 (2022).Article CAS PubMed Google Scholar Ban, D. K. et al. A single multiomics transistor for electronic detection of SARS-Cov2 variants antigen and viral rna without amplification. Adv. Mater. Technol. 8, 2201945 (2023).Article CAS Google Scholar Wang, H. et al. Unamplified system for sensitive and typing detection of ASFV by the cascade platform that CRISPR-Cas12a combined with graphene field-effect transistor. Biosens. Bioelectron. 240, 115637 (2023).Article CAS PubMed Google Scholar Balderston, S. et al. Discrimination of single-point mutations in unamplified genomic DNA via Cas9 immobilized on a graphene field-effect transistor. Nat. Biomed. Eng. 5, 713–725 (2021). This study expands on the use of graphene and Cas9-based FET biosensors for rapid, amplification-free detection of single-point mutations in genomic DNA.Article CAS PubMed Google Scholar Zhang, J. et al. Mxene coupled with CRISPR-Cas12a for analysis of endotoxin and bacteria. Anal. Chem. 93, 4676–4681 (2021).Article PubMed Google Scholar Duan, H. et al. A CRISPR-Cas12a powered electrochemical sensor based on gold nanoparticles and MXene composite for enhanced nucleic acid detection. Sens. Actuat. B 380, 133342 (2023).Article CAS Google Scholar Guo, J., Zhu, Y. & Miao, P. Nano-impact electrochemical biosensing based on a CRISPR-responsive DNA hydrogel. Nano Lett. 23, 11099–11104 (2023).Article CAS PubMed Google Scholar Ates, H. C. et al. End-to-end design of wearable sensors. Nat. Rev. Mater. 15, 887–907 (2022).Article Google Scholar Nguyen, P. Q. et al. Wearable materials with embedded synthetic biology sensors for biomolecule detection. Nat. Biotechnol. 39, 1366–1374 (2021).Article CAS PubMed Google Scholar Andrews, J. P. M. et al. First-in-human controlled inhalation of thin graphene oxide nanosheets to study acute cardiorespiratory responses. Nat. Nanotechnol. 19, 705–714 (2024).Article CAS PubMed PubMed Central Google Scholar Zargartalebi, H. et al. Active-reset protein sensors enable continuous in vivo monitoring of inflammation. Science 386, 1146–1153 (2024).Article CAS PubMed Google Scholar Yi, Y. et al. Nanopore-based enzyme-linked immunosorbent assay for cancer biomarker detection. Nat. Nanotechnol. https://doi.org/10.1038/s41565-025-01918-z (2025).McGenity, C. et al. Artificial intelligence in digital pathology: a systematic review and meta-analysis of diagnostic test accuracy. npj Digit. Med. 7, 114 (2024).Article PubMed PubMed Central Google Scholar Li, L. et al. Interactions of bacteria with monolithic lateral silicon nanospikes inside a microfluidic channel. Front. Chem. 7, 483 (2019).Article CAS PubMed PubMed Central Google Scholar