Integrating historical sources for long-term ecological knowledge and biodiversity conservation

Wait 5 sec.

McClenachan, L., Cooper, A. B., McKenzie, M. G. & Drew, J. A. The importance of surprising results and best practices in historical ecology. BioScience 65, 932–939 (2015).Article  Google Scholar Clavero, M. The King’s aquatic desires: 16th-century fish and crayfish introductions into Spain. Fish. Fish. 23, 1251–1263 (2022).Article  Google Scholar Monsarrat, S., Novellie, P., Rushworth, I. & Kerley, G. Shifted distribution baselines: neglecting long-term biodiversity records risks overlooking potentially suitable habitat for conservation management. Philos. Trans. R. Soc. B: Biol. Sci. 374, 20190215 (2019).Article  Google Scholar Clavero, M., García-Reyes, A., Fernández-Gil, A., Revilla, E. & Fernández, N. Where wolves were: setting historical baselines for wolf recovery in Spain. Anim. Conserv. 26, 239–249 (2023).Article  Google Scholar Collins, A. C., Böhm, M. & Collen, B. Choice of baseline affects historical population trends in hunted mammals of North America. Biol. Conserv. 242, 108421 (2020).Article  Google Scholar Grace, M. et al. Using historical and palaeoecological data to inform ambitious species recovery targets. Philos. Trans. R. Soc. B: Biol. Sci. 374, 20190297 (2019).Article  Google Scholar Thurstan, R. H. et al. Records reveal the vast historical extent of European oyster reef ecosystems. Nat. Sustain. https://doi.org/10.1038/s41893-024-01441-4 (2024).Szabó, P. Historical ecology: past, present and future. Biol. Rev. 90, 997–1014 (2015).Article  Google Scholar Armstrong, C. G. et al. Anthropological contributions to historical ecology: 50 questions, infinite prospects. PLoS ONE 12, e0171883 (2017).Article  Google Scholar Russell, E. W. B. People and the Land Through Time: Linking Ecology and History (Yale Univ. Press, 1997).Haidvogl, G. et al. Typology of historical sources and the reconstruction of long-term historical changes of riverine fish: a case study of the Austrian Danube and northern Russian rivers. Ecol. Freshw. Fish. 23, 498–515 (2014).Article  Google Scholar Mottl, O. et al. Global acceleration in rates of vegetation change over the past 18,000 years. Science 372, 860–864 (2021).Article  CAS  Google Scholar Buldrini, F. et al. Botanical memory: five centuries of floristic changes revealed by a Renaissance herbarium (Ulisse Aldrovandi, 1551–1586). R. Soc. Open. Sci. 10, 230866 (2023).Article  Google Scholar Tomscha, S. A. et al. A guide to historical data sets for reconstructing ecosystem service change over time. BioScience 66, 747–762 (2016).Article  Google Scholar Clavero, M. & Hermoso, V. Historical data to plan the recovery of the European eel. J. Appl. Ecol. 52, 960–968 (2015).Article  Google Scholar Sales, L. P. et al. The effect of past defaunation on ranges, niches, and future biodiversity forecasts. Glob. Change Biol. 28, 3683–3693 (2022).Article  CAS  Google Scholar Viana, D. S., Oficialdegui, F. J., Soriano, M. D. C., Hermoso, V. & Clavero, M. Niche dynamics along two centuries of multiple crayfish invasions. J. Anim. Ecol. 92, 2138–2150 (2023).Article  Google Scholar Vellend, M., Brown, C. D., Kharouba, H. M., McCune, J. L. & Myers-Smith, I. H. Historical ecology: using unconventional data sources to test for effects of global environmental change. Am. J. Bot. 100, 1294–1305 (2013).Article  Google Scholar Nogué, S. et al. The human dimension of biodiversity changes on islands. Science 372, 488–491 (2021).Article  Google Scholar Stegner, M. A. & Spanbauer, T. L. North American pollen records provide evidence for macroscale ecological changes in the Anthropocene. Proc. Natl Acad. Sci. USA 120, e2306815120 (2023).Article  CAS  Google Scholar Davies, A. L., Streeter, R., Lawson, I. T., Roucoux, K. H. & Hiles, W. The application of resilience concepts in palaeoecology. Holocene 28, 1523–1534 (2018).Article  Google Scholar Buma, B. et al. The value of linking paleoecological and neoecological perspectives to understand spatially-explicit ecosystem resilience. Landsc. Ecol. 34, 17–33 (2019).Article  Google Scholar Benito, B. M., Gil-Romera, G. & Birks, H. J. B. Ecological memory at millennial time-scales: the importance of data constraints, species longevity and niche features. Ecography 43, 1–10 (2020).Article  Google Scholar Frisch, D. et al. A millennial-scale chronicle of evolutionary responses to cultural eutrophication in Daphnia. Ecol. Lett. 17, 360–368 (2014).Article  Google Scholar Frisch, D., Becker, D. & Wojewodzic, M. W. Dissecting the transcriptomic basis of phenotypic evolution in an aquatic keystone grazer. Mol. Biol. Evol. 37, 475–487 (2020).Article  CAS  Google Scholar Anderson, N. J., Bugmann, H., Dearing, J. A. & Gaillard, M.-J. Linking palaeoenvironmental data and models to understand the past and to predict the future. Trends Ecol. Evol. 21, 696–704 (2006).Article  Google Scholar Willis, K. J., Bailey, R. M., Bhagwat, S. A. & Birks, H. J. B. Biodiversity baselines, thresholds and resilience: testing predictions and assumptions using palaeoecological data. Trends Ecol. Evol. 25, 583–591 (2010).Article  CAS  Google Scholar Monsarrat, S. & Svenning, J.-C. Using recent baselines as benchmarks for megafauna restoration places an unfair burden on the Global South. Ecography 2022, e05795 (2022).Article  Google Scholar McKechnie, I. et al. Archaeological data provide alternative hypotheses on Pacific herring (Clupea pallasii) distribution, abundance, and variability. Proc. Natl Acad. Sci. USA 111, E807–E816 (2014).Article  CAS  Google Scholar Grenz, J. & Armstrong, C. G. Pop-up restoration in colonial contexts: applying an indigenous food systems lens to ecological restoration. Front. Sustain. Food Syst. 7, 1244790 (2023).Article  Google Scholar Pooley, S. Historians are from Venus, ecologists are from Mars. Conserv. Biol. 27, 1481–1483 (2014).Article  Google Scholar Crabtree, S. A. & Dunne, J. A. Towards a science of archaeoecology. Trends Ecol. Evol. 37, 976–984 (2022).Article  Google Scholar Woodbridge, J. et al. What drives biodiversity patterns? Using long-term multidisciplinary data to discern centennial-scale change. J. Ecol. 109, 1396–1410 (2021).Article  Google Scholar Swetnam, T. W., Allen, C. D. & Betancourt, J. L. Applied historical ecology: using the past to manage for the future. Ecol. Appl. 9, 1189–1206 (1999).Article  Google Scholar Turner, N. J. et al. Cultural management of living trees: an international perspective. J. Ethnobiol. 29, 237–270 (2009).Article  Google Scholar Rostain, S. et al. Two thousand years of garden urbanism in the Upper Amazon. Science 383, 183–189 (2024).Article  CAS  Google Scholar McClanahan, T. R. & Omukoto, J. O. Comparison of modern and historical fish catches (AD 750–1400) to inform goals for marine protected areas and sustainable fisheries. Conserv. Biol. 25, 945–955 (2011).Article  Google Scholar Balée, W. & Erickson, C. Time and Complexity in Historical Ecology: Studies in the Neotropical Lowlands (Columbia Univ. Press, 2006).Skovrind, M. et al. Elucidating the sustainability of 700  y of Inuvialuit beluga whale hunting in the Mackenzie River Delta, Northwest Territories, Canada. Proc. Natl Acad. Sci. USA 121, e2405993121 (2024).Article  CAS  Google Scholar Müllerová, J., Szabó, P. & Hédl, R. The rise and fall of traditional forest management in southern Moravia: a history of the past 700  years. For. Ecol. Manag. 331, 104–115 (2014).Article  Google Scholar Östlund, L. et al. Culturally modified trees and forest structure at a Kawésqar ancient settlement at Río Batchelor, western Patagonia. Hum. Ecol. 48, 585–597 (2020).Article  Google Scholar Ames, E. P. Atlantic cod stock structure in the Gulf of Maine. Fisheries 29, 10–28 (2004).Article  Google Scholar Turner, N. J., Geralda Armstrong, C. & Lepofsky, D. Adopting a root: documenting ecological and cultural signatures of plant translocations in Northwestern North America. Am. Anthropol. 123, 879–897 (2021).Article  Google Scholar Biró, M. et al. Oral history methods can reveal drivers of landscape transformation: understanding land-use legacies with local and traditional knowledge in Central Europe. People Nat. 6, 2463–2479 (2024).Article  Google Scholar Fogerty, J. E. in The Historical Ecology Handbook: A Restorationist’s Guide to Reference Ecosystems (eds Egan, D. & Howell, E. A.) 101–120 (Oxford Univ. Press, 2001).Letham, B., Lepofsky, D. & Greening, S. Wil Luunda ‘Waada aks (Where the Waters Meet): deep-time histories of shifting estuarine landscapes and human settlement in Laxgalts’ap watershed, northern British Columbia, Canada. J. Isl. Coast. Archaeol. 20, 174–203 (2023).Article  Google Scholar Tattoni, C. Nomen omen. Toponyms predict recolonization and extinction patterns for large carnivores. Nat. Conserv. 37, 1 (2019).Article  Google Scholar Cámara-Leret, R. & Bascompte, J. Language extinction triggers the loss of unique medicinal knowledge. Proc. Natl Acad. Sci. USA 118, e2103683118 (2021).Article  Google Scholar Knopp, J. A., Levenstein, B., Watson, A., Ivanova, I. & Lento, J. Systematic review of documented Indigenous knowledge of freshwater biodiversity in the circumpolar Arctic. Freshw. Biol. 67, 194–209 (2022).Article  Google Scholar Hughes, A. C. et al. Reconstructing cave past to manage and conserve cave present and future. Ecol. Indic. 155, 111051 (2023).Article  Google Scholar Schulte, L. A. & Mladenoff, D. J. The original US public land survey records: their use and limitations in reconstructing presettlement vegetation. J. For. 99, 5–10 (2001).Google Scholar Viana, D. S., Blanco-Garrido, F., Delibes, M. & Clavero, M. A 16th-century biodiversity and crop inventory. Ecology 103, e3783 (2022).Article  Google Scholar Barlow, G. The landscape of Domesday Suffolk. Landsc. Hist. 32, 19–36 (2011).Article  Google Scholar d’Andrimont, R. et al. Harmonised LUCAS in-situ land cover and use database for field surveys from 2006 to 2018 in the European Union. Sci. Data 7, 352 (2020).Article  Google Scholar Forejt, M., Dolejš, M., Zacharová, J. & Raška, P. Quantifying inconsistencies in old cadastral maps and their impact on land-use reconstructions. J. Land. Use Sci. 15, 570–584 (2020).Article  Google Scholar Thurstan, R. H., Campbell, A. B. & Pandolfi, J. M. Nineteenth century narratives reveal historic catch rates for Australian snapper (Pagrus auratus). Fish. Fish. 17, 210–225 (2016).Article  Google Scholar Clavero, M. Species substitutions driven by anthropogenic positive feedbacks: Spanish crayfish species as a case study. Biol. Conserv. 193, 80–85 (2016).Article  Google Scholar Levin, P. S. & Dufault, A. Eating up the food web. Fish Fish. 11, 307–312 (2010).Article  Google Scholar Walker, R. D. & Jones, G. A. Consumer-driven depletion of the northern diamondback terrapin in Chesapeake Bay. Mar. Coast. Fish. 10, 132–143 (2018).Article  Google Scholar Turvey, S. T. & McClune, K. Expanding the historical baseline: using pre-modern archives to inform conservation from ecological and human perspectives. BioScience 75, 240–250 (2025).Article  Google Scholar Primack, R. B., Higuchi, H. & Miller-Rushing, A. J. The impact of climate change on cherry trees and other species in Japan. Biol. Conserv. 142, 1943–1949 (2009).Article  Google Scholar Zhang, Y. et al. Range contraction of the Yangtze finless porpoise inferred from classic Chinese poems. Curr. Biol. 35, R329–R330 (2025).Article  CAS  Google Scholar McBride, E., Winder, I. C. & Wüster, W. What bit the ancient Egyptians? Niche modelling to identify the snakes described in the Brooklyn medical papyrus. Environ. Archaeol. 30, 354–367 (2023).Article  Google Scholar Van Houtan, K. S., McClenachan, L. & Kittinger, J. N. Seafood menus reflect long-term ocean changes. Front. Ecol. Env. 11, 289–290 (2013).Article  Google Scholar Miyazaki, Y. & Murase, A. Fish rubbings, ‘gyotaku’, as a source of historical biodiversity data. ZooKeys 904, 89–101 (2020).Article  Google Scholar Mustonen, T. Communal visual histories to detect environmental change in northern areas: examples of emerging North American and Eurasian practices. Ambio 44, 766–777 (2015).Article  Google Scholar Tribot, A.-S., Faget, D., Villesseche, H., Richard, T. & Changeux, T. Multi-secular and regional trends of aquatic biodiversity in European early modern paintings: toward an ecological and historical significance. Ecol. Soc. 26, 26 (2021).Article  Google Scholar Depauw, L. et al. The use of photos to investigate ecological change. J. Ecol. 110, 1220–1236 (2022).Article  Google Scholar Burney, D. A. et al. Rock art from Andriamamelo Cave in the Beanka protected area of western Madagascar. J. Isl. Coast. Archaeol. 17, 171–194 (2022).Article  Google Scholar Veth, P., Myers, C., Heaney, P. & Ouzman, S. Plants before farming: the deep history of plant-use and representation in the rock art of Australia’s Kimberley region. Quat. Int. 489, 26–45 (2018).Article  Google Scholar Guagnin, M. et al. Rock art provides new evidence on the biogeography of kudu (Tragelaphus imberbis), wild dromedary, aurochs (Bos primigenius) and African wild ass (Equus africanus) in the early and middle Holocene of north-western Arabia. J. Biogeogr. 45, 727–740 (2018).Article  Google Scholar Guidetti, P. & Micheli, F. Ancient art serving marine conservation. Front. Ecol. Environ. 9, 374–375 (2011).Article  Google Scholar Iriarte, J. et al. Ice Age megafauna rock art in the Colombian Amazon? Philos. Trans. R. Soc. B: Biol. Sci. 377, 20200496 (2022).Article  Google Scholar Begossi, A. & Caires, R. Art, fisheries and ethnobiology. J. Ethnobiol. Ethnomed. 11, 16 (2015).Article  Google Scholar Warren, D. R. et al. An interdisciplinary framework for evaluating 19th century landscape paintings for ecological research. Ecosphere 14, e4649 (2023).Article  Google Scholar Overduin-de Vries, A. M. O. & Smith, P. J. in Ichthyology in Context (1500–1880) (eds Smith, P. J. & Egmond, F.) 298–321 (Brill, 2023).Hayashi, R. Past biodiversity: historical Japanese illustrations document the distribution of whales and their epibiotic barnacles. Ecol. Indic. 45, 687–691 (2014).Article  Google Scholar McClenachan, L. Documenting loss of large trophy fish from the Florida keys with historical photographs. Conserv. Biol. 23, 636–643 (2009).Article  Google Scholar De Frenne, P. et al. Using archived television video footage to quantify phenology responses to climate change. Methods Ecol. Evol. 9, 1874–1882 (2018).Article  Google Scholar Rohde, R. F. & Hoffman, M. T. The historical ecology of namibian rangelands: vegetation change since 1876 in response to local and global drivers. Sci. Total. Environ. 416, 276–288 (2012).Article  CAS  Google Scholar Morueta-Holme, N., Iversen, L. L., Corcoran, D., Rahbek, C. & Normand, S. Unlocking ground-based imagery for habitat mapping. Trends Ecol. Evol. 39, 349–358 (2023).Article  Google Scholar Sanseverino, M. E., Whitney, M. J. & Higgs, E. S. Exploring landscape change in mountain environments with the mountain legacy online image analysis toolkit. Mt. Res. Dev. 36, 407–416 (2016).Article  Google Scholar Munteanu, C. et al. Forest and agricultural land change in the Carpathian region—a meta-analysis of long-term patterns and drivers of change. Land. Use Policy 38, 685–697 (2014).Article  Google Scholar Loran, C., Haegi, S. & Ginzler, C. Comparing historical and contemporary maps—a methodological framework for a cartographic map comparison applied to Swiss maps. Int. J. Geogr. Inf. Sci. 32, 2123–2139 (2018).Article  Google Scholar Bergès, L. & Dupouey, J.-L. Historical ecology and ancient forests: progress, conservation issues and scientific prospects, with some examples from the French case. J. Veg. Sci. 32, e12846 (2021).Article  Google Scholar Wulder, M. A. et al. Fifty years of Landsat science and impacts. Remote. Sens. Environ. 280, 113195 (2022).Article  Google Scholar Munteanu, C. et al. The potential of historical spy-satellite imagery to support research in ecology and conservation. BioScience 74, 159–168 (2024).Article  Google Scholar Lišèák, V. Mapa mondi (Catalan Atlas of 1375), Majorcan cartographic school, and 14th century Asia. Proc. ICA 1, 1–8 (2018).Article  Google Scholar Goldberg, E., Kirby, K., Hall, J. & Latham, J. The ancient woodland concept as a practical conservation tool in Great Britain. J. Nat. Conserv. 15, 109–119 (2007).Article  Google Scholar Fuchs, R., Verburg, P. H., Clevers, J. G. P. W. & Herold, M. The potential of old maps and encyclopaedias for reconstructing historic European land cover/use change. Appl. Geogr. 59, 43–55 (2015).Article  Google Scholar Kaim, D. et al. Broad scale forest cover reconstruction from historical topographic maps. Appl. Geogr. 67, 39–48 (2016).Article  Google Scholar Lieskovský, J. et al. Historical land use dataset of the Carpathian region (1819–1980). J. Maps 14, 644–651 (2018).Article  Google Scholar Thorne, J. H. & Le, T. N. California’s historic legacy for landscape change, the Wieslander Vegetation Type Maps. Madroño 63, 293–328 (2016).Article  Google Scholar Walker, S. Cultural barriers to market integration: evidence from 19th century Austria. J. Comp. Econ. 46, 1122–1145 (2018).Article  Google Scholar Kaim, D., Szwagrzyk, M., Dobosz, M., Troll, M. & Ostafin, K. Mid-19th-century building structure locations in Galicia and Austrian Silesia under the Habsburg monarchy. Earth Syst. Sci. Data 13, 1693–1709 (2021).Article  Google Scholar Fretwell, P. T. et al. Using remote sensing to detect whale strandings in remote areas: the case of sei whales mass mortality in Chilean Patagonia. PLoS ONE 14, e0222498 (2019).Article  CAS  Google Scholar Padubidri, C., Kamilaris, A., Karatsiolis, S. & Kamminga, J. Counting sea lions and elephants from aerial photography using deep learning with density maps. Anim. Biotelemetry 9, 27 (2021).Article  Google Scholar Park, D. S. et al. Herbarium records provide reliable phenology estimates in the understudied tropics. J. Ecol. 111, 327–337 (2023).Article  Google Scholar Sanders, N. J., Cooper, N., Davis Rabosky, A. R. & Gibson, D. J. Leveraging natural history collections to understand the impacts of global change. J. Anim. Ecol. 92, 232–236 (2023).Article  Google Scholar Fortibuoni, T., Libralato, S., Raicevich, S., Giovanardi, O. & Solidoro, C. Coding early naturalists’ accounts into long-term fish community changes in the Adriatic Sea (1800–2000). PLoS ONE 5, e15502 (2010).Article  Google Scholar Egmond, F. C. in Ichthyology in Context (1500–1880) (eds Smith, P. J. & Egmond, F.) 147–243 (Brill, 2023).Mullin, V. E. et al. First large-scale quantification study of DNA preservation in insects from natural history collections using genome-wide sequencing. Methods Ecol. Evol. 14, 360–371 (2023).Article  Google Scholar Forcina, G. et al. Introduced and extinct: neglected archival specimens shed new light on the historical biogeography of an iconic avian species in the Mediterranean. Integrative Zool. 19, 887–897 (2024).Article  CAS  Google Scholar Meineke, E. K., Davies, T. J., Daru, B. H. & Davis, C. C. Biological collections for understanding biodiversity in the Anthropocene. Philos. Trans. R. Soc. B: Biol. Sci. 374, 20170386 (2018).Article  Google Scholar Lang, P. L. M., Willems, F. M., Scheepens, J. F., Burbano, H. A. & Bossdorf, O. Using herbaria to study global environmental change. N. Phytol. 221, 110–122 (2019).Article  Google Scholar Law, W. & Salick, J. Human-induced dwarfing of Himalayan snow lotus, Saussurea laniceps (Asteraceae). Proc. Natl Acad. Sci. USA 102, 10218–10220 (2005).Article  CAS  Google Scholar Gotelli, N. J. et al. Estimating species relative abundances from museum records. Methods Ecol. Evol. 14, 431–443 (2023).Article  Google Scholar Bartomeus, I., Stavert, J. R., Ward, D. & Aguado, O. Historical collections as a tool for assessing the global pollination crisis. Philos. Trans. R. Soc. B: Biol. Sci. 374, 20170389 (2018).Article  Google Scholar Rakosy, D., Ashman, T.-L., Zoller, L., Stanley, A. & Knight, T. M. Integration of historic collections can shed light on patterns of change in plant–pollinator interactions and pollination service. Funct. Ecol. 37, 218–233 (2023).Article  CAS  Google Scholar Saporiti, F. et al. Longer and less overlapping food webs in anthropogenically disturbed marine ecosystems: confirmations from the past. PLoS ONE 9, e103132 (2014).Article  Google Scholar Morueta-Holme, N. et al. Strong upslope shifts in Chimborazo’s vegetation over two centuries since Humboldt. Proc. Natl Acad. Sci. USA 112, 12741–12745 (2015).Article  CAS  Google Scholar Smith, A. B. et al. Evaluation of species distribution models by resampling of sites surveyed a century ago by Joseph Grinnell. Ecography 36, 1017–1031 (2013).Article  Google Scholar Steinbauer, M. J. et al. Accelerated increase in plant species richness on mountain summits is linked to warming. Nature 556, 231–234 (2018).Article  CAS  Google Scholar Vild, O. et al. Long-term shift towards shady and nutrient-rich habitats in Central European temperate forests. N. Phytol. 242, 1018–1028 (2024).Article  CAS  Google Scholar Abzhanov, A. Darwin’s Galápagos finches in modern biology. Philos. Trans. R. Soc. B: Biol. Sci. 365, 1001–1007 (2010).Article  Google Scholar Hortal, J., Diniz-Filho, J. A. F., Low, M. E. Y., Stigall, A. L. & Yeo, D. C. J. Alfred Russel Wallace’s legacy: an interdisciplinary conception of evolution in space and time. NPJ Biodivers. 2, 1–3 (2023).Article  Google Scholar Smol, J. P. et al. (eds.). Tracking Environmental Change Using Lake Sediments: Terrestrial, Algal, and Siliceous Indicators Vol. 3 (Springer Netherlands, 2001).Brewer, S., Jackson, S. T. & Williams, J. W. Paleoecoinformatics: applying geohistorical data to ecological questions. Trends Ecol. Evol. 27, 104–112 (2012).Article  Google Scholar Leunda, M. et al. Ice cave reveals environmental forcing of long-term Pyrenean tree line dynamics. J. Ecol. 107, 814–828 (2019).Article  Google Scholar González-Sampériz, P. et al. Strong continentality and effective moisture drove unforeseen vegetation dynamics since the last interglacial at inland Mediterranean areas: the Villarquemado sequence in NE Iberia. Quat. Sci. Rev. 242, 106425 (2020).Article  Google Scholar Ellegaard, M. et al. Dead or alive: sediment DNA archives as tools for tracking aquatic evolution and adaptation. Commun. Biol. 3, 1–11 (2020).Article  Google Scholar Fairchild, I. J. & Baker, A. Speleothem Science: From Process to Past Environments (Wiley, 2012).Chase, B. M. et al. Rock hyrax middens: a palaeoenvironmental archive for southern African drylands. Quat. Sci. Rev. 56, 107–125 (2012).Article  Google Scholar Moore, G., Tessler, M., Cunningham, S. W., Betancourt, J. & Harbert, R. Paleo-metagenomics of North American fossil packrat middens: past biodiversity revealed by ancient DNA. Ecol. Evol. 10, 2530–2544 (2020).Article  Google Scholar Campbell, J. W., Waters, M. N. & Rich, F. Guano core evidence of palaeoenvironmental change and Woodland Indian inhabitance in Fern Cave, Alabama, USA, from the mid-Holocene to present. Boreas 46, 462–469 (2017).Article  Google Scholar Cook, E. R. et al. Megadroughts in North America: placing IPCC projections of hydroclimatic change in a long-term palaeoclimate context. J. Quat. Sci. 25, 48–61 (2010).Article  Google Scholar Hoffman, K. M., Lertzman, K. P. & Starzomski, B. M. Ecological legacies of anthropogenic burning in a British Columbia coastal temperate rain forest. J. Biogeogr. 44, 2903–2915 (2017).Article  Google Scholar Greiser, C. & Joosten, H. Archive value: measuring the palaeo-information content of peatlands in a conservation and compensation perspective. Int. J. Biodivers. Science, Ecosyst. Serv. Manag. 14, 209–220 (2018).Article  Google Scholar Prentice, I. C. Pollen representation, source area, and basin size: toward a unified theory of pollen analysis. Quat. Res. 23, 76–86 (1985).Article  Google Scholar Vleminckx, J. et al. Soil charcoal to assess the impacts of past human disturbances on tropical forests. PLoS ONE 9, e108121 (2014).Article  Google Scholar Orsini, L. et al. The evolutionary time machine: using dormant propagules to forecast how populations can adapt to changing environments. Trends Ecol. Evol. 28, 274–282 (2013).Article  Google Scholar Sandom, C. J., Ejrnæs, R., Hansen, M. D. D. & Svenning, J.-C. High herbivore density associated with vegetation diversity in interglacial ecosystems. Proc. Natl Acad. Sci. USA 111, 4162–4167 (2014).Article  CAS  Google Scholar Parducci, L. et al. Ancient plant DNA in lake sediments. N. Phytol. 214, 924–942 (2017).Article  CAS  Google Scholar Capo, E. et al. Lake sedimentary DNA research on past terrestrial and aquatic biodiversity: overview and recommendations. Quaternary 4, 6 (2021).Article  Google Scholar Anderson, N. J. Landscape disturbance and lake response: temporal and spatial perspectives. Frer 7, 77–120 (2014).Article  Google Scholar Pearce, E. A. et al. Substantial light woodland and open vegetation characterized the temperate forest biome before Homo sapiens. Sci. Adv. 9, eadi9135 (2023).Article  Google Scholar Izdebski, A. et al. Palaeoecological data indicates land-use changes across Europe linked to spatial heterogeneity in mortality during the Black Death pandemic. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-021-01652-4 (2022).Nikulina, A. et al. Hunter-gatherer impact on European interglacial vegetation: a modelling approach. Quat. Sci. Rev. 324, 108439 (2024).Article  Google Scholar Pearce, E. A. et al. Drivers of vegetation structure differ between proposed natural reference conditions for temperate Europe. Glob. Ecol. Biogeogr. 34, e70020 (2025).Article  Google Scholar Karitter, P. et al. Combining the resurrection approach with transplant experiments to investigate adaptation of plant populations to environmental change. Perspect. Plant. Ecol., Evol. Syst. 62, 125773 (2024).Article  Google Scholar Wersebe, M. J. & Weider, L. J. Resurrection genomics provides molecular and phenotypic evidence of rapid adaptation to salinization in a keystone aquatic species. Proc. Natl Acad. Sci. USA 120, e2217276120 (2023).Article  CAS  Google Scholar Jackson, S. T. & Blois, J. L. Community ecology in a changing environment: perspectives from the quaternary. Proc. Natl Acad. Sci. USA 112, 4915–4921 (2015).Article  CAS  Google Scholar Rapacciuolo, G. & Blois, J. L. Understanding ecological change across large spatial, temporal and taxonomic scales: integrating data and methods in light of theory. Ecography 42, 1247–1266 (2019).Article  Google Scholar Bayraktarov, E. et al. Do big unstructured biodiversity data mean more knowledge? Front. Ecol. Evol. 6, 239 (2019).Article  Google Scholar Hughes, A. C. et al. Sampling biases shape our view of the natural world. Ecography 44, 1259–1269 (2021).Article  Google Scholar Callaghan, C. T., Poore, A. G. B., Hofmann, M., Roberts, C. J. & Pereira, H. M. Large-bodied birds are over-represented in unstructured citizen science data. Sci. Rep. 11, 19073 (2021).Article  CAS  Google Scholar Lotze, H. K. et al. in Shifting Baselines: The Past and the Future of Ocean Fisheries (eds Jackson, J. B. C., Alexander, K. E. & Sala, E.) 137–161 (Island Press/Center for Resource Economics, 2011).McClenachan, L. et al. Global research priorities for historical ecology to inform conservation. Endanger. Species Res. 54, 285–310 (2024).Article  Google Scholar Fairhead, J. & Leach, M. in Misreading the African Landscape: Society and Ecology in a Forest-Savanna Mosaic (eds Fairhead, J. & Leach, M.) 55–85 (Cambridge Univ. Press, 1996).Pluskowski, A., Brown, A. & Seetah, K. The challenges and future of environmental archaeology in Mauritius. Int. J. Histor. Archaeol. https://doi.org/10.1007/s10761-023-00727-1 (2024).Barnosky, A. D. et al. Merging paleobiology with conservation biology to guide the future of terrestrial ecosystems. Science 355, eaah4787 (2017).Article  Google Scholar Kittinger, J. N. et al. Historical reconstruction reveals recovery in Hawaiian coral reefs. PLoS ONE 6, e25460 (2011).Article  CAS  Google Scholar Gil-Romera, G., Lamb, H. F., Turton, D., Sevilla-Callejo, M. & Umer, M. Long-term resilience, bush encroachment patterns and local knowledge in a Northeast African savanna. Glob. Environ. Change 20, 612–626 (2010).Article  Google Scholar Clavero, M. Shifting baselines and the conservation of non-native species. Conserv. Biol. 28, 1434–1436 (2014).Article  Google Scholar Clavero, M., Nores, C., Kubersky-Piredda, S. & Centeno-Cuadros, A. Interdisciplinarity to reconstruct historical introductions: solving the status of cryptogenic crayfish. Biol. Rev. 91, 1036–1049 (2016).Article  Google Scholar Szabó, P. et al. Trends and events through seven centuries: the history of a wetland landscape in the Czech Republic. Reg. Env. Change 17, 501–514 (2017).Article  Google Scholar Li, B., Pan, R. & Oxnard, C. E. Extinction of snub-nosed monkeys in China during the past 400 years. Int. J. Primatol. 23, 1227–1244 (2002).Article  Google Scholar Early-Capistrán, M.-M. et al. Reconstructing 290 years of a data-poor fishery through ethnographic and archival research: the East Pacific green turtle (Chelonia mydas) in Baja California, Mexico. Fish. Fish. 19, 57–77 (2018).Article  Google Scholar Nelson, G. & Ellis, S. The history and impact of digitization and digital data mobilization on biodiversity research. Philos. Trans. R. Soc. B: Biol. Sci. 374, 20170391 (2018).Article  Google Scholar Nowak, M. M., Słupecka, K. & Jackowiak, B. Geotagging of natural history collections for reuse in environmental research. Ecol. Indic. 131, 108131 (2021).Article  Google Scholar Chytrý, M. et al. European Vegetation Archive (EVA): an integrated database of European vegetation plots. Appl. Veg. Sci. 19, 173–180 (2016).Article  Google Scholar Knollová, I. et al. ReSurveyEurope: a database of resurveyed vegetation plots in Europe. J. Veg. Sci. 35, e13235 (2024).Article  Google Scholar Williams, J. W. et al. The Neotoma Paleoecology Database, a multiproxy, international, community-curated data resource. Quat. Res. 89, 156–177 (2018).Article  Google Scholar Szabó, P. et al. More than trees: the challenges of creating a geodatabase to capture the complexity of forest history. Hist. Methods: A J. Quant. Interdiscip. Hist. 51, 175–189 (2018).Article  Google Scholar Wilson, R. J. et al. Applying computer vision to digitised natural history collections for climate change research: temperature-size responses in British butterflies. Methods Ecol. Evol. 14, 372–384 (2023).Article  Google Scholar Weeks, B. C. et al. A deep neural network for high-throughput measurement of functional traits on museum skeletal specimens. Methods Ecol. Evol. 14, 347–359 (2023).Article  Google Scholar von Allmen, R. et al. Method development and application of object detection and classification to Quaternary fossil pollen sequences. Quat. Sci. Rev. 327, 108521 (2024).Article  Google Scholar Dunker, S. et al. Pollen analysis using multispectral imaging flow cytometry and deep learning. N. Phytol. 229, 593–606 (2021).Article  Google Scholar Nita, M. D., Munteanu, C., Gutman, G., Abrudan, I. V. & Radeloff, V. C. Widespread forest cutting in the aftermath of World War II captured by broad-scale historical Corona spy satellite photography. Remote. Sens. Environ. 204, 322–332 (2018).Article  Google Scholar Kirillov, A. et al. Segment anything. In Proc. IEEE/CVF International Conf. on Computer Vision (ICCV), 4015–4026 (2023).Tricker, J. et al. Assessing the accuracy of georeferenced landcover data derived from oblique imagery using machine learning. Remote. Sens. Ecol. Conserv. 10, 401–415 (2024).Article  Google Scholar Bugeja, M., Dingli, A. & Seychell, D. in Rediscovering Heritage Through Technology: A Collection of Innovative Research Case Studies That Are Reworking The Way We Experience Heritage (eds. Seychell, D. & Dingli, A.) 3–23 (Springer International, 2020).Muehlberger, G. et al. Transforming scholarship in the archives through handwritten text recognition: Transkribus as a case study. J. Doc. 75, 954–976 (2019).Article  Google Scholar Suissa, O., Elmalech, A. & Zhitomirsky-Geffet, M. Text analysis using deep neural networks in digital humanities and information science. J. Assoc. Inf. Sci. Technol. 73, 268–287 (2022).Article  Google Scholar Santana-Cordero, A. M. & Szabó, P. Exploring qualitative methods of historical ecology and their links with qualitative research. Int. J. Qual. Methods 18, 1609406919872112 (2019).Article  Google Scholar Sun, J. et al. Automatic identification and morphological comparison of bivalve and brachiopod fossils based on deep learning. PeerJ. 11, e16200 (2023).Article  Google Scholar Wei, G., Peng, C., Zhu, Q., Zhou, X. & Yang, B. Application of machine learning methods for paleoclimatic reconstructions from leaf traits. Int. J. Climatol. 41, E3249–E3262 (2021).Article  Google Scholar Bledsoe, E. K. et al. Data rescue: saving environmental data from extinction. Proc. R. Soc. B: Biol. Sci. 289, 20220938 (2022).Article  Google Scholar Knockaert, C. et al. Biodiversity data rescue in the framework of a long-term Kenya–Belgium cooperation in marine sciences. Sci. Data 6, 85 (2019).Article  Google Scholar Rosi, E. J. et al. Give long-term datasets world heritage status. Science 378, 1180–1181 (2022).Article  CAS  Google Scholar Purgar, M., Glasziou, P., Klanjscek, T., Nakagawa, S. & Culina, A. Supporting study registration to reduce research waste. Nat. Ecol. Evol. 8, 1391–1399 (2024).Article  Google Scholar Scott, S. L. et al. Documenting changing landscapes with rePhotoSA: a repeat photography and citizen science project in Southern Africa. Ecol. Inform. 64, 101390 (2021).Article  Google Scholar Flowers, V., Frutos, C., MacKenzie, A. S., Fanning, R. & Fraser, E. E. Snap decisions: assessing participation and data quality in a citizen science program using repeat photography. Citizen Sci. Theory Practice 8, 62 (2023).Article  Google Scholar Soul, L. C., Barclay, R. S., Bolton, A. & Wing, S. L. Fossil atmospheres: a case study of citizen science in question-driven palaeontological research. Philos. Trans. R. Soc. B: Biol. Sci. 374, 20170388 (2018).Article  Google Scholar Froese, G. Z. L. et al. Coupling paraecology and hunter GPS self-follows to quantify village bushmeat hunting dynamics across the landscape scale. Afr. J. Ecol. 60, 229–249 (2022).Article  Google Scholar Tribot, A.-S., Faget, D., Richard, T. & Changeux, T. The role of pre-19th century art in conservation biology: an untapped potential for connecting with nature. Biol. Conserv. 276, 109791 (2022).Article  Google Scholar Wieczorek, J. et al. Darwin Core: an evolving community-developed biodiversity data standard. PLoS ONE 7, e29715 (2012).Article  CAS  Google Scholar Guralnick, R., Walls, R. & Jetz, W. Humboldt Core—toward a standardized capture of biological inventories for biodiversity monitoring, modeling and assessment. Ecography 40, 001–012 (2017).Google Scholar Nieto-Lugilde, D. et al. Time to better integrate paleoecological research infrastructures with neoecology to improve understanding of biodiversity long-term dynamics and to inform future conservation. Environ. Res. Lett. 16, 095005 (2021).Article  Google Scholar Tengö, M. et al. Weaving knowledge systems in IPBES, CBD and beyond—lessons learned for sustainability. Curr. Opin. Environ. Sustain. 26–27, 17–25 (2017).Article  Google Scholar Davis, A. & Wagner, J. R. Who knows? On the importance of identifying “experts” when researching local ecological knowledge. Hum. Ecol. 31, 463–489 (2003).Article  Google Scholar Liboiron, M. Decolonizing geoscience requires more than equity and inclusion. Nat. Geosci. 14, 876–877 (2021).Article  CAS  Google Scholar Swanson, H. A. et al. History as grounds for interdisciplinarity: promoting sustainable woodlands via an integrative ecological and socio-cultural perspective. One Earth 4, 226–237 (2021).Article  Google Scholar Svenning, J.-C., Kerr, M. R., Mungi, N. A., Ordonez, A. & Riede, F. Defining the anthropocene as a geological epoch captures human impacts’ triphasic nature to empower science and action. One Earth 7, 1678–1681 (2024).Article  Google Scholar Navarro, L. M. et al. Monitoring biodiversity change through effective global coordination. Curr. Opin. Environ. Sustain. 29, 158–169 (2017).Article  Google Scholar Perino, A. et al. Biodiversity post-2020: closing the gap between global targets and national-level implementation. Conserv. Lett. 15, e12848 (2022).Article  Google Scholar Gwinn, N. E. & Rinaldo, C. The Biodiversity Heritage Library: sharing biodiversity literature with the world. IFLA J. 35, 25–34 (2009).Article  Google Scholar Domínguez-Castro, F. et al. Dating historical droughts from religious ceremonies, the international pro pluvia rogation database. Sci. Data 8, 186 (2021).Article  Google Scholar Buckland, P. I. SEAD - the Strategic Environmental Archaeology Database inter-linking multiproxy environmental data with archaeological investigations and ecology. In Archaeology in the Digital Era: Papers from the 40th Annual Conference of Computer Applications and Quantitative Methods in Archaeology (CAA), Southampton, 26-29 March 2012 (eds Chrysanthi, A. et al.) 320–331 (Amsterdam Univ. Press, 2014).Guiterman, C. H. et al. The International Tree-Ring Data Bank at fifty: status of stewardship for future scientific discovery. Tree-Ring Res. 80, 13–18 (2024).Article  Google Scholar Lawenda, M., Wiland-Szymańska, J., Nowak, M. M., Jędrasiak, D. & Jackowiak, B. The Adam Mickiewicz University Nature Collections IT system (AMUNATCOLL): metadata structure, database and operational procedures. Biodivers. Res. Conserv. 65, 35–48 (2022).Article  Google Scholar Anderson, N. J. et al. Limnological and palaeolimnological studies of lakes in south-western Greenland. Geol. Greenl. Surv. Bull. 183, 68–74 (1999).Article  Google Scholar Forman, R. T. T. & Russell, E. W. B. Evaluation of historical data in ecology. Bull. Ecol. Soc. Am. 64, 5–7 (1983).Article  Google Scholar Reithmaier, T. in The Historical Ecology Handbook (eds Egan, D. & Howell, E. A.) 121–146 (Island Press, 2001).Kaim, D. Land cover changes in the Polish Carpathians based on repeat photography. Carpath. J. Earth Environ. Sci. 12, 485–498 (2017).Google Scholar Clavero, M., García-Reyes, A., Fernández-Gil, A., Revilla, E. & Fernández, N. On the misuse of historical data to set conservation baselines: wolves in Spain as an example. Biol. Conserv. 276, 109810 (2022).Article  Google Scholar