ИИ уже достаточно давно научился искать симптомы, отвечать на вопросы из учебников и угадывать диагнозы на тестах, кажется, что следующий рубеж уже совсем близко и они смогут заменить врачей-диагностов. Однако, на более сложных и приближённых к реальности задачах, когда нужно самому принимать решения по ходу, многие из существующих ИИ-моделей почему-то оказываются не способны рассуждать на уровне врача-эксперта: они часто не могут понять, когда стоит остановиться, не знают какие анализы назначить или попросту действуют по шаблону.Новое исследование, наоборот, утверждает, что всё о чём мы думали раньше вообще не важно — и размер модели и количество данных — всё это практически не влияет на итог, а самое главное это то, как именно ИИ учится рассуждать и стратегически мыслить. Авторы помещают ИИ в виртуальную клинику, где каждое действие имеет значение, а решение о неправильном выборе будущего анализа повлияет на конечный диагноз. При этом, ИИ получает обратную связь не только за финальный точный диагноз, но и за всю цепочку принятых решений.Давайте разберёмся, почему для успеха ИИ недостаточно просто «знать правильный ответ» из учебника и почему обучение на реалистичных медицинских сценариях позволяет делать рассуждения ИИ похожими на врачебные. Всё это меняет не только подход к диагностике, но и то, как вообще следует использовать ИИ в медицине. Читать далее