Organization of replicated chromosomes by DNA loops and sister chromatid cohesion

Wait 5 sec.

Michaelis, C., Ciosk, R. & Nasmyth, K. Cohesins: chromosomal proteins that prevent premature separation of sister chromatids. Cell 91, 35–45 (1997).Article  CAS  PubMed  Google Scholar Guacci, V., Koshland, D. & Strunnikov, A. A direct link between sister chromatid cohesion and chromosome condensation revealed through the analysis of MCD1 in S. cerevisiae. Cell 91, 47–57 (1997).Article  CAS  PubMed  PubMed Central  Google Scholar Birkenbihl, R. P. & Subramani, S. Cloning and characterization of rad21 an essential gene of Schizosaccharomyces pombe involved in DNA double-strand-break repair. Nucleic Acids Res. 20, 6605–6611 (1992).Article  CAS  PubMed  PubMed Central  Google Scholar Losada, A., Hirano, M. & Hirano, T. Identification of Xenopus SMC protein complexes required for sister chromatid cohesion. Genes Dev. 12, 1986–1997 (1998).Article  CAS  PubMed  PubMed Central  Google Scholar Nasmyth, K. Disseminating the genome: joining, resolving, and separating sister chromatids during mitosis and meiosis. Annu. Rev. Genet. 35, 673–745 (2001).Article  CAS  PubMed  Google Scholar Yatskevich, S., Rhodes, J. & Nasmyth, K. Organization of chromosomal DNA by SMC complexes. Annu. Rev. Genet. 53, 445–482 (2019).Article  CAS  PubMed  Google Scholar Hoencamp, C. & Rowland, B. D. Genome control by SMC complexes. Nat. Rev. Mol. Cell Biol. 24, 633–650 (2023).Article  CAS  PubMed  Google Scholar Remeseiro, S., Cuadrado, A. & Losada, A. Cohesin in development and disease. Development 140, 3715–3718 (2013).Article  CAS  PubMed  Google Scholar Davidson, I. F. et al. DNA loop extrusion by human cohesin. Science 366, 1338–1345 (2019).Article  CAS  PubMed  Google Scholar Kim, Y., Shi, Z., Zhang, H., Finkelstein, I. J. & Yu, H. Human cohesin compacts DNA by loop extrusion. Science 366, 1345–1349 (2019).Article  CAS  PubMed  PubMed Central  Google Scholar Davidson, I. F. & Peters, J.-M. Genome folding through loop extrusion by SMC complexes. Nat. Rev. Mol. Cell Biol. 22, 445–464 (2021).Article  CAS  PubMed  Google Scholar Dekker, C., Haering, C. H., Peters, J.-M. & Rowland, B. D. How do molecular motors fold the genome? Science 382, 646–648 (2023).Article  CAS  PubMed  Google Scholar Alipour, E. & Marko, J. F. Self-organization of domain structures by DNA-loop-extruding enzymes. Nucleic Acids Res. 11202–11212 (2012).Kim, E., Barth, R. & Dekker, C. Looping the genome with SMC complexes. Annu. Rev. Biochem. 92, 15–41 (2023).Article  CAS  PubMed  Google Scholar Karpinska, M. A. & Oudelaar, A. M. The role of loop extrusion in enhancer-mediated gene activation. Curr. Opin. Genet. Dev. 79, 102022 (2023).Article  CAS  PubMed  Google Scholar Ochs, F. et al. Sister chromatid cohesion is mediated by individual cohesin complexes. Science 383, 1122–1130 (2024).Article  CAS  PubMed  Google Scholar Nagasaka, K. et al. Cohesin mediates DNA loop extrusion and sister chromatid cohesion by distinct mechanisms. Mol. Cell 83, 3049–3063.e6 (2023).Article  CAS  PubMed  Google Scholar Batty, P. & Gerlich, D. W. Mitotic chromosome mechanics: how cells segregate their genome. Trends Cell Biol. 29, 717–726 (2019).Article  PubMed  Google Scholar Paulson, J. R., Hudson, D. F., Cisneros-Soberanis, F. & Earnshaw, W. C. Mitotic chromosomes. Semin. Cell Dev. Biol. 117, 7–29 (2021).Article  CAS  PubMed  PubMed Central  Google Scholar Mitter, M. et al. Conformation of sister chromatids in the replicated human genome. Nature 586, 139–144 (2020).Article  CAS  PubMed  PubMed Central  Google Scholar Batty, P. et al. Cohesin-mediated DNA loop extrusion resolves sister chromatids in G2 phase. EMBO J. 42, e113475 (2023).Article  CAS  PubMed  PubMed Central  Google Scholar Zhao, H. et al. Extensive mutual influences of SMC complexes shape 3D genome folding. Nature 640, 543–553 (2025).Article  CAS  PubMed  Google Scholar Samejima, K. et al. Rules of engagement for condensins and cohesins guide mitotic chromosome formation. Science 388, eadq1709 (2025).Article  CAS  PubMed  PubMed Central  Google Scholar Gruber, S., Haering, C. H. & Nasmyth, K. Chromosomal cohesin forms a ring. Cell 112, 765–777 (2003).Article  CAS  PubMed  Google Scholar Arumugam, P. et al. ATP hydrolysis is required for cohesin’s association with chromosomes. Curr. Biol. 13, 1941–1953 (2003).Article  CAS  PubMed  Google Scholar Ciosk, R. et al. Cohesin’s binding to chromosomes depends on a separate complex consisting of Scc2 and Scc4 proteins. Mol. Cell 5, 243–254 (2000).Article  CAS  PubMed  Google Scholar Hu, B. et al. ATP hydrolysis is required for relocating cohesin from sites occupied by its Scc2/4 loading complex. Curr. Biol. 21, 12–24 (2011).Article  CAS  PubMed  Google Scholar Petela, N. J. et al. Scc2 is a potent activator of cohesin’s ATPase that promotes loading by binding Scc1 without Pds5. Mol. Cell 70, 1134–1148.e7 (2018).Article  CAS  PubMed  PubMed Central  Google Scholar Shi, Z., Gao, H., Bai, X. & Yu, H. Cryo-EM structure of the human cohesin-NIPBL-DNA complex. Science 368, 1454–1459 (2020).Article  CAS  PubMed  Google Scholar Gerlich, D., Koch, B., Dupeux, F., Peters, J. M. & Ellenberg, J. Live-cell imaging reveals a stable cohesin-chromatin interaction after but not before DNA replication. Curr. Biol. 16, 1571–1578 (2006).Article  CAS  PubMed  Google Scholar Ladurner, R. et al. Sororin actively maintains sister chromatid cohesion. EMBO J. 35, 635–653 (2016).Article  CAS  PubMed  PubMed Central  Google Scholar Holzmann, J. et al. Absolute quantification of cohesin, CTCF and their regulators in human cells. eLife 8, e46269 (2019).Article  PubMed  PubMed Central  Google Scholar Gabriele, M. et al. Dynamics of CTCF- and cohesin-mediated chromatin looping revealed by live-cell imaging. Science 376, 496–501 (2022).Article  CAS  PubMed  PubMed Central  Google Scholar Kueng, S. et al. Wapl controls the dynamic association of cohesin with chromatin. Cell 127, 955–967 (2006).Article  CAS  PubMed  Google Scholar Gandhi, R., Gillespie, P. J. & Hirano, T. Human Wapl is a cohesin-binding protein that promotes sister-chromatid resolution in mitotic prophase. Curr. Biol. 16, 2406–2417 (2006).Article  CAS  PubMed  PubMed Central  Google Scholar Tedeschi, A. et al. Wapl is an essential regulator of chromatin structure and chromosome segregation. Nature 501, 564–568 (2013).Article  CAS  PubMed  PubMed Central  Google Scholar Hara, K. et al. Structure of cohesin subcomplex pinpoints direct shugoshin-Wapl antagonism in centromeric cohesion. Nat. Struct. Mol. Biol. 21, 864–870 (2014).Article  CAS  PubMed  PubMed Central  Google Scholar Roig, M. B. et al. Structure and function of cohesin’s Scc3/SA regulatory subunit. FEBS Lett. 588, 3692–3702 (2014).Article  CAS  PubMed  PubMed Central  Google Scholar Haarhuis, J. H. I. et al. The cohesin release factor WAPL restricts chromatin loop extension. Cell 169, 693–707.e14 (2017).Article  CAS  PubMed  PubMed Central  Google Scholar Ben-Shahar, T. R. et al. Eco1-dependent cohesin acetylation during establishment of sister chromatid cohesion. Science 321, 563–566 (2008).Article  CAS  Google Scholar Unal, E. et al. A molecular determinant for the establishment of sister chromatid cohesion. Science 321, 566–569 (2008).Article  PubMed  Google Scholar Wutz, G. et al. ESCO1 and CTCF enable formation of long chromatin loops by protecting cohesinSTAG1 from WAPL. eLife 9, e52091 (2020).Article  CAS  PubMed  PubMed Central  Google Scholar Bastié, N. et al. Smc3 acetylation, Pds5 and Scc2 control the translocase activity that establishes cohesin-dependent chromatin loops. Nat. Struct. Mol. Biol. 29, 575–585 (2022).Article  PubMed  Google Scholar van Ruiten, M. S. et al. The cohesin acetylation cycle controls chromatin loop length through a PDS5A brake mechanism. Nat. Struct. Mol. Biol. 29, 586–591 (2022).Article  PubMed  PubMed Central  Google Scholar Ivanov, D. et al. Eco1 is a novel acetyltransferase that can acetylate proteins involved in cohesion. Curr. Biol. 12, 323–328 (2002).Article  CAS  PubMed  Google Scholar Zhang, J. et al. Acetylation of Smc3 by Eco1 is required for S phase sister chromatid cohesion in both human and yeast. Mol. Cell 31, 143–151 (2008).Article  CAS  PubMed  Google Scholar Alomer, R. M. et al. Esco1 and Esco2 regulate distinct cohesin functions during cell cycle progression. Proc. Natl Acad. Sci. USA 114, 9906–9911 (2017).Article  CAS  PubMed  PubMed Central  Google Scholar Kawasumi, R. et al. ESCO1/2’s roles in chromosome structure and interphase chromatin organization. Genes Dev. 31, 2136–2150 (2017).Article  CAS  PubMed  PubMed Central  Google Scholar Hou, F. & Zou, H. Two human orthologues of Eco1/Ctf7 acetyltransferases are both required for proper sister-chromatid cohesion. Mol. Biol. Cell 16, 3908–3918 (2005).Article  CAS  PubMed  PubMed Central  Google Scholar Nora, E. P. et al. Targeted degradation of CTCF decouples local insulation of chromosome domains from genomic compartmentalization. Cell 169, 930–944.e22 (2017).Article  CAS  PubMed  PubMed Central  Google Scholar Wutz, G. et al. Topologically associating domains and chromatin loops depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteins. EMBO J. 36, e201798004 (2017).Article  Google Scholar Davidson, I. F. et al. CTCF is a DNA-tension-dependent barrier to cohesin-mediated loop extrusion. Nature 616, 822–827 (2023).Article  CAS  PubMed  PubMed Central  Google Scholar Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380 (2012).Article  CAS  PubMed  PubMed Central  Google Scholar Nora, E. P. et al. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485, 381–385 (2012).Article  CAS  PubMed  PubMed Central  Google Scholar Sexton, T. et al. Three-dimensional folding and functional organization principles of the Drosophila genome. Cell 148, 458–472 (2012).Article  CAS  PubMed  Google Scholar Rao, S. S. P. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014).Article  CAS  PubMed  PubMed Central  Google Scholar Sanborn, A. L. et al. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. Proc. Natl Acad. Sci. USA 112, E6456–E6465 (2015).Article  CAS  PubMed  PubMed Central  Google Scholar Fudenberg, G. et al. Formation of chromosomal domains by loop extrusion. Cell Rep. 15, 2038–2049 (2016).Article  CAS  PubMed  PubMed Central  Google Scholar Cattoglio, C. et al. Determining cellular CTCF and cohesin abundances to constrain 3D genome models. eLife 8, e40164 (2019).Article  PubMed  PubMed Central  Google Scholar Brunner, A. et al. Quantitative imaging of loop extruders rebuilding interphase genome architecture after mitosis. J. Cell Biol. 224, e202405169 (2025).Article  CAS  PubMed  PubMed Central  Google Scholar Corsi, F., Rusch, E. & Goloborodko, A. Loop extrusion rules: the next generation. Curr. Opin. Genet. Dev. 81, 102061 (2023).Article  CAS  PubMed  Google Scholar Çamdere, G., Guacci, V., Stricklin, J. & Koshland, D. The ATPases of cohesin interface with regulators to modulate cohesin-mediated DNA tethering. eLife 4, e11315 (2015).Article  PubMed  PubMed Central  Google Scholar Panizza, S., Tanaka, T., Hochwagen, A., Eisenhaber, F. & Nasmyth, K. Pds5 cooperates with cohesin in maintaining sister chromatid cohesion. Curr. Biol. 10, 1557–1564 (2000).Article  CAS  PubMed  Google Scholar Sumara, I., Vorlaufer, E., Gieffers, C., Peters, B. H. & Peters, J. M. Characterization of vertebrate cohesin complexes and their regulation in prophase. J. Cell Biol. 151, 749–762 (2000).Article  CAS  PubMed  PubMed Central  Google Scholar Hartman, T., Stead, K., Koshland, D. & Guacci, V. Pds5p is an essential chromosomal protein required for both sister chromatid cohesion and condensation in Saccharomyces cerevisiae. J. Cell Biol. 151, 613–626 (2000).Article  CAS  PubMed  PubMed Central  Google Scholar Tóth, A. et al. Yeast cohesin complex requires a conserved protein, Eco1p(Ctf7), to establish cohesion between sister chromatids during DNA replication. Genes Dev. 13, 320–333 (1999).Article  PubMed  PubMed Central  Google Scholar Rowland, B. D. et al. Building sister chromatid cohesion: Smc3 acetylation counteracts an antiestablishment activity. Mol. Cell 33, 763–774 (2009).Article  CAS  PubMed  Google Scholar Lafont, A. L., Song, J. & Rankin, S. Sororin cooperates with the acetyltransferase Eco2 to ensure DNA replication-dependent sister chromatid cohesion. Proc. Natl Acad. Sci. USA 107, 20364–20369 (2010).Article  CAS  PubMed  PubMed Central  Google Scholar Nishiyama, T. et al. Sororin mediates sister chromatid cohesion by antagonizing Wapl. Cell 143, 737–749 (2010).Article  CAS  PubMed  Google Scholar Song, J. et al. Cohesin acetylation promotes sister chromatid cohesion only in association with the replication machinery. J. Biol. Chem. 287, 34325–34336 (2012).Article  CAS  PubMed  PubMed Central  Google Scholar Nasmyth, K. A., Lee, B.-G., Roig, M. B. & Loewe, J. What AlphaFold tells us about cohesin’s retention on and release from chromosomes. eLife 12, RP88656 (2023).Article  PubMed  PubMed Central  Google Scholar Schmitz, J., Watrin, E., Lénárt, P., Mechtler, K. & Peters, J.-M. Sororin is required for stable binding of cohesin to chromatin and for sister chromatid cohesion in interphase. Curr. Biol. 17, 630–636 (2007).Article  CAS  PubMed  Google Scholar Rankin, S., Ayad, N. G. & Kirschner, M. W. Sororin, a substrate of the anaphase-promoting complex, is required for sister chromatid cohesion in vertebrates. Mol. Cell 18, 185–200 (2005).Article  CAS  PubMed  Google Scholar Selig, S., Okumura, K., Ward, D. C. & Cedar, H. Delineation of DNA replication time zones by fluorescence in situ hybridization. EMBO J. 11, 1217–1225 (1992).Article  CAS  PubMed  PubMed Central  Google Scholar Stanyte, R. et al. Dynamics of sister chromatid resolution during cell cycle progression. J. Cell Biol. 217, 1985–2004 (2018).Article  CAS  PubMed  PubMed Central  Google Scholar Eykelenboom, J. K. et al. Live imaging of marked chromosome regions reveals their dynamic resolution and compaction in mitosis. J. Cell Biol. 51, jcb.201807125 (2019).Google Scholar Nagasaka, K., Hossain, M. J., Roberti, M. J., Ellenberg, J. & Hirota, T. Sister chromatid resolution is an intrinsic part of chromosome organization in prophase. Nat. Cell Biol. 18, 692–699 (2016).Article  CAS  PubMed  Google Scholar Goloborodko, A., Imakaev, M. V., Marko, J. F. & Mirny, L. Compaction and segregation of sister chromatids via active loop extrusion. eLife 5, e14864 (2016).Article  PubMed  PubMed Central  Google Scholar Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).Article  CAS  PubMed  PubMed Central  Google Scholar Mitter, M. et al. Sister chromatid–sensitive Hi-C to map the conformation of replicated genomes. Nat. Protoc. 17, 1486–1517 (2022).Article  CAS  PubMed  Google Scholar Mitter, M. & Gerlich, D. W. Mapping sister chromatid conformation in replicated chromosomes. Trends Biochem. Sci. 46, 169–170 (2020).Article  PubMed  Google Scholar Oomen, M. E., Hedger, A. K., Watts, J. K. & Dekker, J. Detecting chromatin interactions between and along sister chromatids with SisterC. Nat. Methods 17, 1002–1009 (2020).Article  CAS  PubMed  PubMed Central  Google Scholar Teloni, F. et al. Cohesin guides homology search during DNA repair using loops and sister chromatid linkages. Science 390, eadw0566 (2025).Article  PubMed  Google Scholar Bastié, N. et al. Sister chromatid cohesion halts DNA loop expansion. Mol. Cell 84, 1139–1148.e5 (2024).Article  PubMed  Google Scholar Haering, C. H., Löwe, J., Hochwagen, A. & Nasmyth, K. Molecular architecture of SMC proteins and the yeast cohesin complex. Mol. Cell 9, 773–788 (2002).Article  CAS  PubMed  Google Scholar Uhlmann, F., Wernic, D., Poupart, M. A., Koonin, E. V. & Nasmyth, K. Cleavage of cohesin by the CD clan protease separin triggers anaphase in yeast. Cell 103, 375–386 (2000).Article  CAS  PubMed  Google Scholar Gligoris, T. G. et al. Closing the cohesin ring: structure and function of its Smc3-kleisin interface. Science 346, 963–967 (2014).Article  CAS  PubMed  PubMed Central  Google Scholar Haering, C. H., Farcas, A.-M., Arumugam, P., Metson, J. & Nasmyth, K. The cohesin ring concatenates sister DNA molecules. Nature 454, 297–301 (2008).Article  CAS  PubMed  Google Scholar Srinivasan, M. et al. The cohesin ring uses its hinge to organize DNA using non-topological as well as topological mechanisms. Cell 173, 1508–1519.e18 (2018).Article  CAS  PubMed  PubMed Central  Google Scholar Borrie, M. S., Kraycer, P. M. & Gartenberg, M. R. Transcription-driven translocation of cohesive and non-cohesive cohesin in vivo. Mol. Cell. Biol. 43, 254–268 (2023).Article  CAS  PubMed  PubMed Central  Google Scholar Lengronne, A. et al. Cohesin relocation from sites of chromosomal loading to places of convergent transcription. Nature 430, 573–578 (2004).Article  CAS  PubMed  PubMed Central  Google Scholar Collier, J. E. & Nasmyth, K. A. DNA passes through cohesin’s hinge as well as its Smc3–kleisin interface. eLife 11, e80310 (2022).Article  CAS  PubMed  PubMed Central  Google Scholar Gruber, S. et al. Evidence that loading of cohesin onto chromosomes involves opening of its SMC hinge. Cell 127, 523–537 (2006).Article  CAS  PubMed  Google Scholar Beckouët, F. et al. Releasing activity disengages cohesin’s Smc3/Scc1 interface in a process blocked by acetylation. Mol. Cell 61, 563–574 (2016).Article  PubMed  PubMed Central  Google Scholar Zhang, N. et al. A handcuff model for the cohesin complex. J. Cell Biol. 183, 1019–1031 (2008).Article  CAS  PubMed  PubMed Central  Google Scholar Ivanov, D. & Nasmyth, K. A physical assay for sister chromatid cohesion in vitro. Mol. Cell 27, 300–310 (2007).Article  CAS  PubMed  Google Scholar Woglar, A. et al. Quantitative cytogenetics reveals molecular stoichiometry and longitudinal organization of meiotic chromosome axes and loops. PLOS Biol. 18, e3000817 (2020).Article  CAS  PubMed  PubMed Central  Google Scholar Xiang, S. & Koshland, D. Cohesin architecture and clustering in vivo. eLife 10, e62243 (2021).Article  CAS  PubMed  PubMed Central  Google Scholar Eng, T., Guacci, V. & Koshland, D. Interallelic complementation provides functional evidence for cohesin–cohesin interactions on DNA. Mol. Biol. Cell 26, 4224–4235 (2015).Article  CAS  PubMed  PubMed Central  Google Scholar Gillespie, P. J. & Hirano, T. Scc2 couples replication licensing to sister chromatid cohesion in xenopus egg extracts. Curr. Biol. 14, 1598–1603 (2004).Article  CAS  PubMed  Google Scholar Guillou, E. et al. Cohesin organizes chromatin loops at DNA replication factories. Genes Dev. 24, 2812–2822 (2010).Article  CAS  PubMed  PubMed Central  Google Scholar Takahashi, T. S., Yiu, P., Chou, M. F., Gygi, S. & Walter, J. C. Recruitment of Xenopus Scc2 and cohesin to chromatin requires the pre-replication complex. Nat. Cell Biol. 6, 991–996 (2004).Article  CAS  PubMed  Google Scholar Zheng, G., Kanchwala, M., Xing, C. & Yu, H. MCM2–7-dependent cohesin loading during S phase promotes sister-chromatid cohesion. eLife 7, e33920 (2018).Article  PubMed  PubMed Central  Google Scholar Skibbens, R. V. Chl1p, a DNA helicase-like protein in budding yeast, functions in sister-chromatid cohesion. Genetics 166, 33–42 (2004).Article  CAS  PubMed  PubMed Central  Google Scholar Samora, C. P. et al. Ctf4 links DNA replication with sister chromatid cohesion establishment by recruiting the Chl1 helicase to the replisome. Mol. Cell 63, 371–384 (2016).Article  CAS  PubMed  PubMed Central  Google Scholar Psakhye, I., Kawasumi, R., Abe, T., Hirota, K. & Branzei, D. PCNA recruits cohesin loader Scc2 to ensure sister chromatid cohesion. Nat. Struct. Mol. Biol. 30, 1286–1294 (2023).Article  CAS  PubMed  PubMed Central  Google Scholar Murayama, Y. et al. Coordination of cohesin and DNA replication observed with purified proteins. Nature 626, 653–660 (2024).Article  CAS  PubMed  Google Scholar Xu, H., Boone, C. & Brown, G. W. Genetic dissection of parallel sister-chromatid cohesion pathways. Genetics 176, 1417–1429 (2007).Article  CAS  PubMed  PubMed Central  Google Scholar Srinivasan, M., Fumasoni, M., Petela, N. J., Murray, A. & Nasmyth, K. A. Cohesion is established during DNA replication utilising chromosome associated cohesin rings as well as those loaded de novo onto nascent DNAs. eLife 9, 1–27 (2020).Article  Google Scholar Rhodes, J. D. P. et al. Cohesin can remain associated with chromosomes during DNA replication. Cell Rep. 20, 2749–2755 (2017).Article  CAS  PubMed  PubMed Central  Google Scholar Glaser, S., Molodtsov, M. I., Diffley, J. F. X. & Uhlmann, F. Replisome passage through the cohesin ring. Cell 188, 5618–5631.e14 (2025).Article  CAS  PubMed  Google Scholar Davidson, I. F. et al. Rapid movement and transcriptional re-localization of human cohesin on DNA. EMBO J. 35, e201695402 (2016).Article  Google Scholar Stigler, J., Çamdere, G. Ö, Koshland, D. E. & Greene, E. C. Single-molecule imaging reveals a collapsed conformational state for DNA-bound cohesin. Cell Rep. 15, 988–998 (2016).Article  CAS  PubMed  PubMed Central  Google Scholar Cameron, G. et al. Sister chromatid cohesion establishment during DNA replication termination. Science 384, eadf0224 (2024).Article  Google Scholar Gutierrez-Escribano, P. et al. A conserved ATP- and Scc2/4-dependent activity for cohesin in tethering DNA molecules. Sci. Adv. 5, eaay6804 (2019).Article  CAS  PubMed  PubMed Central  Google Scholar Murayama, Y., Samora, C. P., Kurokawa, Y., Iwasaki, H. & Uhlmann, F. Establishment of DNA-DNA interactions by the cohesin ring. Cell 172, 465–477.e15 (2018).Article  CAS  PubMed  PubMed Central  Google Scholar Sutani, T., Kawaguchi, T., Kanno, R., Itoh, T. & Shirahige, K. Budding yeast Wpl1(Rad61)-Pds5 complex counteracts sister chromatid cohesion-establishing reaction. Curr. Biol. 19, 492–497 (2009).Article  CAS  PubMed  Google Scholar Chan, K.-L. et al. Cohesin’s DNA exit gate is distinct from its entrance gate and is regulated by acetylation. Cell 150, 961–974 (2012).Article  CAS  PubMed  PubMed Central  Google Scholar Moldovan, G.-L., Pfander, B. & Jentsch, S. PCNA controls establishment of sister chromatid cohesion during S phase. Mol. Cell 23, 723–732 (2006).Article  CAS  PubMed  Google Scholar Ivanov, M. P. et al. The replicative helicase MCM recruits cohesin acetyltransferase ESCO2 to mediate centromeric sister chromatid cohesion. EMBO J. 37, e97150 (2018).Article  PubMed  PubMed Central  Google Scholar Liu, N. Q. et al. WAPL maintains a cohesin loading cycle to preserve cell-type-specific distal gene regulation. Nat. Genet. 53, 100–109 (2021).Article  CAS  PubMed  Google Scholar Minamino, M. et al. Temporal regulation of ESCO2 degradation by the MCM complex, the CUL4-DDB1-VPRBP complex, and the anaphase-promoting complex. Curr. Biol. 28, 2665–2672.e5 (2018).Article  CAS  PubMed  Google Scholar Bender, D. et al. Multivalent interaction of ESCO2 with the replication machinery is required for sister chromatid cohesion in vertebrates. Proc. Natl Acad. Sci. USA 117, 1081–1089 (2020).Article  CAS  PubMed  Google Scholar Yoshimura, A., Sutani, T. & Shirahige, K. Functional control of Eco1 through the MCM complex in sister chromatid cohesion. Gene 784, 145584 (2021).Article  CAS  PubMed  Google Scholar Minamino, M., Bouchoux, C., Canal, B., Diffley, J. F. X. & Uhlmann, F. A replication fork determinant for the establishment of sister chromatid cohesion. Cell 186, 837–849.e11 (2023).Article  CAS  PubMed  Google Scholar Chan, K.-L. et al. Pds5 promotes and protects cohesin acetylation. Proc. Natl Acad. Sci. USA 110, 13020–13025 (2013).Article  CAS  PubMed  PubMed Central  Google Scholar Vaur, S., Feytout, A., Vazquez, S. & Javerzat, J. Pds5 promotes cohesin acetylation and stable cohesin–chromosome interaction. EMBO Rep. 13, 645–652 (2012).Article  CAS  PubMed  PubMed Central  Google Scholar Minamino, M. et al. Esco1 acetylates cohesin via a mechanism different from that of Esco2. Curr. Biol. 25, 1694–1706 (2015).Article  CAS  PubMed  Google Scholar Yamada, T., Tahara, E., Kanke, M., Kuwata, K. & Nishiyama, T. Drosophila dalmatian combines sororin and shugoshin roles in establishment and protection of cohesion. EMBO J. 36, 1513–1527 (2017).Article  CAS  PubMed  PubMed Central  Google Scholar Prusén Mota, I. et al. Sororin is an evolutionary conserved antagonist of WAPL. Nat. Commun. 15, 4729 (2024).Article  PubMed  PubMed Central  Google Scholar Ouyang, Z., Zheng, G., Tomchick, D. R., Luo, X. & Yu, H. Structural basis and IP6 requirement for Pds5-dependent cohesin dynamics. Mol. Cell 62, 248–259 (2016).Article  CAS  PubMed  PubMed Central  Google Scholar Jackson, S. P. & Bartek, J. The DNA-damage response in human biology and disease. Nature 461, 1071–1078 (2009).Article  CAS  PubMed  PubMed Central  Google Scholar Jasin, M. & Rothstein, R. Repair of strand breaks by homologous recombination. Cold Spring Harb. Perspect. Biol. 5, a012740 (2013).Article  PubMed  PubMed Central  Google Scholar Marshall, W. F. et al. Interphase chromosomes undergo constrained diffusional motion in living cells. Curr. Biol. 7, 930–939 (1997).Article  CAS  PubMed  Google Scholar Chubb, J. R., Boyle, S., Perry, P. & Bickmore, W. A. Chromatin motion is constrained by association with nuclear compartments in human cells. Curr. Biol. 12, 439–445 (2002).Article  CAS  PubMed  Google Scholar Barzel, A. & Kupiec, M. Finding a match: how do homologous sequences get together for recombination? Nat. Rev. Genet. 9, 27–37 (2008).Article  CAS  PubMed  Google Scholar Weiner, A., Zauberman, N. & Minsky, A. Recombinational DNA repair in a cellular context: a search for the homology search. Nat. Rev. Microbiol. 7, 748–755 (2009).Article  CAS  PubMed  Google Scholar Renkawitz, J., Lademann, C. A. & Jentsch, S. Mechanisms and principles of homology search during recombination. Nat. Rev. Mol. Cell Biol. 15, 369–383 (2014).Article  CAS  PubMed  Google Scholar Haber, J. E. DNA repair: the search for homology. BioEssays 40, 1700229 (2018).Article  Google Scholar Sjögren, C. & Nasmyth, K. Sister chromatid cohesion is required for postreplicative double-strand break repair in Saccharomyces cerevisiae. Curr. Biol. 11, 991–995 (2001).Article  PubMed  Google Scholar Sonoda, E. et al. Scc1/Rad21/Mcd1 is required for sister chromatid cohesion and kinetochore function in vertebrate cells. Dev. Cell 1, 759–770 (2001).Article  CAS  PubMed  Google Scholar Potts, P. R., Porteus, M. H. & Yu, H. Human SMC5/6 complex promotes sister chromatid homologous recombination by recruiting the SMC1/3 cohesin complex to double-strand breaks. EMBO J. 25, 3377–3388 (2006).Article  CAS  PubMed  PubMed Central  Google Scholar Bauerschmidt, C. et al. Cohesin promotes the repair of ionizing radiation-induced DNA double-strand breaks in replicated chromatin. Nucleic Acids Res. 38, 477–487 (2010).Article  CAS  PubMed  Google Scholar Kadyk, L. C. & Hartwell, L. H. Sister chromatids are preferred over homologs as substrates for recombinational repair in Saccharomyces cerevisiae. Genetics 132, 387–402 (1992).Article  CAS  PubMed  PubMed Central  Google Scholar Johnson, R. D. & Jasin, M. Sister chromatid gene conversion is a prominent double-strand break repair pathway in mammalian cells. EMBO J. 19, 3398–3407 (2000).Article  CAS  PubMed  PubMed Central  Google Scholar Covo, S., Westmoreland, J. W., Gordenin, D. A. & Resnick, M. A. Cohesin is limiting for the suppression of DNA damage-induced recombination between homologous chromosomes. PLoS Genet. 6, 1–16 (2010).Article  Google Scholar Piazza, A. et al. Cohesin regulates homology search during recombinational DNA repair. Nat. Cell Biol. 23, 1176–1186 (2021).Article  CAS  PubMed  Google Scholar Yeh, C. D. et al. Proximity determines donor candidacy during DNA double-stranded break homology directed repair. Preprint at bioRxiv https://doi.org/10.1101/2025.02.10.637161 (2025).Ström, L., Lindroos, H. B., Shirahige, K. & Sjögren, C. Postreplicative recruitment of cohesin to double-strand breaks is required for DNA repair. Mol. Cell 16, 1003–1015 (2004).Article  PubMed  Google Scholar Ünal, E. et al. DNA damage response pathway uses histone modification to assemble a double-strand break-specific cohesin domain. Mol. Cell 16, 991–1002 (2004).Article  PubMed  Google Scholar Kim, J.-S., Krasieva, T. B., LaMorte, V., Taylor, A. M. R. & Yokomori, K. Specific recruitment of human cohesin to laser-induced DNA damage. J. Biol. Chem. 277, 45149–45153 (2002).Article  CAS  PubMed  Google Scholar Caron, P. et al. Cohesin protects genes against γH2AX induced by DNA double-strand breaks. PLoS Genet. 8, e1002460 (2012).Article  CAS  PubMed  PubMed Central  Google Scholar Arnould, C. et al. Loop extrusion as a mechanism for formation of DNA damage repair foci. Nature 590, 660–665 (2021).Article  CAS  PubMed  PubMed Central  Google Scholar Seeber, A. et al. RPA mediates recruitment of MRX to forks and double-strand breaks to hold sister chromatids together. Mol. Cell 64, 951–966 (2016).Article  CAS  PubMed  Google Scholar Bot, C. et al. Independent mechanisms recruit the cohesin loader protein NIPBL to sites of DNA damage. J. Cell Sci. 130, 1134–1146 (2017).Article  CAS  PubMed  PubMed Central  Google Scholar Ström, L. et al. Postreplicative formation of cohesion is required for repair and induced by a single DNA break. Science 317, 242–245 (2007).Article  PubMed  Google Scholar Ünal, E., Heidinger-Pauli, J. M. & Koshland, D. DNA double-strand breaks trigger genome-wide sister-chromatid cohesion through Eco1 (Ctf7). Science 317, 245–248 (2007).Article  PubMed  Google Scholar Marin-Gonzalez, A. et al. Cohesin drives chromatin scanning during the RAD51-mediated homology search. Preprint at bioRxiv https://doi.org/10.1101/2025.02.10.637451 (2025).Collins, P. L. et al. DNA double-strand breaks induce H2Ax phosphorylation domains in a contact-dependent manner. Nat. Commun. 11, 3158 (2020).Article  CAS  PubMed  PubMed Central  Google Scholar Rogakou, E. P., Boon, C., Redon, C. & Bonner, W. M. Megabase chromatin domains involved in DNA double-strand breaks in vivo. J. Cell Biol. 146, 905–916 (1999).Article  CAS  PubMed  PubMed Central  Google Scholar Ochs, F. et al. Stabilization of chromatin topology safeguards genome integrity. Nature 574, 571–574 (2019).Article  CAS  PubMed  Google Scholar Yang, J. H., Brandão, H. B. & Hansen, A. S. DNA double-strand break end synapsis by DNA loop extrusion. Nat. Commun. 14, 1913 (2023).Article  CAS  PubMed  PubMed Central  Google Scholar Gelot, C. et al. The cohesin complex prevents the end joining of distant DNA double-strand ends. Mol. Cell 61, 15–26 (2016).Article  CAS  PubMed  Google Scholar Phipps, J. et al. Cohesin complex oligomerization maintains end-tethering at DNA double-strand breaks. Nat. Cell Biol. 27, 118–129 (2024).Article  PubMed  PubMed Central  Google Scholar Steffensen, S. et al. A role for Drosophila SMC4 in the resolution of sister chromatids in mitosis. Curr. Biol. 11, 295–307 (2001).Article  CAS  PubMed  Google Scholar Ono, T. et al. Differential contributions of condensin I and condensin II to mitotic chromosome architecture in vertebrate cells. Cell 115, 109–121 (2003).Article  CAS  PubMed  Google Scholar Coelho, P. A., Queiroz-Machado, J. & Sunkel, C. E. Condensin-dependent localisation of topoisomerase II to an axial chromosomal structure is required for sister chromatid resolution during mitosis. J. Cell Sci. 116, 4763–4776 (2003).Article  CAS  PubMed  Google Scholar Ono, T., Yamashita, D. & Hirano, T. Condensin II initiates sister chromatid resolution during S phase. J. Cell Biol. 200, 429–441 (2013).Article  CAS  PubMed  PubMed Central  Google Scholar Baxter, J. et al. Positive supercoiling of mitotic DNA drives decatenation by topoisomerase II in eukaryotes. Science 331, 1328–1332 (2011).Article  CAS  PubMed  Google Scholar Charbin, A., Bouchoux, C. & Uhlmann, F. Condensin aids sister chromatid decatenation by topoisomerase II. Nucleic Acids Res. 42, 340–348 (2014).Article  CAS  PubMed  Google Scholar Sen, N. et al. Physical proximity of sister chromatids promotes Top2-dependent intertwining. Mol. Cell 64, 134–147 (2016).Article  CAS  PubMed  PubMed Central  Google Scholar Piskadlo, E., Tavares, A. & Oliveira, R. A. Metaphase chromosome structure is dynamically maintained by condensin I-directed DNA (de)catenation. eLife 6, e26120 (2017).Article  PubMed  PubMed Central  Google Scholar Dyson, S., Segura, J., Martínez-García, B., Valdés, A. & Roca, J. Condensin minimizes topoisomerase II-mediated entanglements of DNA in vivo. EMBO J. 40, e105393 (2021).Article  CAS  PubMed  Google Scholar Losada, A., Hirano, M. & Hirano, T. Cohesin release is required for sister chromatid resolution, but not for condensin-mediated compaction, at the onset of mitosis. Genes Dev. 16, 3004–3016 (2002).Article  CAS  PubMed  PubMed Central  Google Scholar Giménez-Abián, J. F. et al. Regulation of sister chromatid cohesion between chromosome arms. Curr. Biol. 14, 1187–1193 (2004).Article  PubMed  Google Scholar Hauf, S. et al. Dissociation of cohesin from chromosome arms and loss of arm cohesion during early mitosis depends on phosphorylation of SA2. PLoS Biol. 3, e69 (2005).Article  PubMed  PubMed Central  Google Scholar Haarhuis, J. H. I. et al. WAPL-mediated removal of cohesin protects against segregation errors and aneuploidy. Curr. Biol. 23, 2071–2077 (2013).Article  CAS  PubMed  Google Scholar Sumara, I. et al. The dissociation of cohesin from chromosomes in prophase is regulated by polo-like kinase. Mol. Cell 9, 515–525 (2002).Article  CAS  PubMed  Google Scholar Lénárt, P. et al. The small-molecule inhibitor BI 2536 reveals novel insights into mitotic roles of polo-like kinase 1. Curr. Biol. 17, 304–315 (2007).Article  PubMed  Google Scholar Zhang, N., Panigrahi, A. K., Mao, Q. & Pati, D. Interaction of sororin protein with polo-like kinase 1 mediates resolution of chromosomal arm cohesion. J. Biol. Chem. 286, 41826–41837 (2011).Article  CAS  PubMed  PubMed Central  Google Scholar Nishiyama, T. et al. Aurora B and Cdk1 mediate Wapl activation and release of acetylated cohesin from chromosomes by phosphorylating sororin. Proc. Natl Acad. Sci. USA 110, 13404–13409 (2013).Article  CAS  PubMed  PubMed Central  Google Scholar Dreier, M. R., Bekier, M. E. 2nd & Taylor, W. R. Regulation of sororin by Cdk1-mediated phosphorylation. J. Cell Sci. 124, 2976–2987 (2011).Article  CAS  PubMed  PubMed Central  Google Scholar Monda, J. K. & Cheeseman, I. M. The kinetochore-microtubule interface at a glance. J. Cell Sci. 131, jcs214577 (2018).Article  PubMed  PubMed Central  Google Scholar Deluca, J. G. & Musacchio, A. Structural organization of the kinetochore-microtubule interface. Curr. Opin. Cell Biol. 24, 48–56 (2012).Article  CAS  PubMed  Google Scholar Musacchio, A. The molecular biology of spindle assembly checkpoint signaling dynamics. Curr. Biol. 25, R1002–R1018 (2015).Article  CAS  PubMed  Google Scholar Prosser, S. L. & Pelletier, L. Mitotic spindle assembly in animal cells: a fine balancing act. Nat. Rev. Mol. Cell Biol. 18, 187–201 (2017).Article  CAS  PubMed  Google Scholar Foley, E. A. & Kapoor, T. M. Microtubule attachment and spindle assembly checkpoint signalling at the kinetochore. Nat. Rev. Mol. Cell Biol. 14, 25–37 (2012).Article  Google Scholar Walczak, C. E., Cai, S. & Khodjakov, A. Mechanisms of chromosome behaviour during mitosis. Nat. Rev. Mol. Cell Biol. 11, 91–102 (2010).Article  CAS  PubMed  PubMed Central  Google Scholar Lampson, M. A. & Cheeseman, I. M. Sensing centromere tension: Aurora B and the regulation of kinetochore function. Trends Cell Biol. 21, 133–140 (2011).Article  CAS  PubMed  Google Scholar Krenn, V. & Musacchio, A. The Aurora B kinase in chromosome bi-orientation and spindle checkpoint signaling. Front. Oncol. 5, 225 (2015).Article  PubMed  PubMed Central  Google Scholar Sacristan, C. et al. Vertebrate centromeres in mitosis are functionally bipartite structures stabilized by cohesin. Cell 187, 3006–3023.e26 (2024).Article  CAS  PubMed  PubMed Central  Google Scholar Tanaka, T., Fuchs, J., Loidl, J. & Nasmyth, K. Cohesin ensures bipolar attachment of microtubules to sister centromeres and resists their precocious separation. Nat. Cell Biol. 2, 492–499 (2000).Article  CAS  PubMed  Google Scholar Oliveira, R. A., Hamilton, R. S., Pauli, A., Davis, I. & Nasmyth, K. Cohesin cleavage and Cdk inhibition trigger formation of daughter nuclei. Nat. Cell Biol. 12, 185–192 (2010).Article  CAS  PubMed  PubMed Central  Google Scholar Salic, A., Waters, J. C. & Mitchison, T. J. Vertebrate shugoshin links sister centromere cohesion and kinetochore microtubule stability in mitosis. Cell 118, 567–578 (2004).Article  CAS  PubMed  Google Scholar Tang, Z., Sun, Y., Harley, S. E., Zou, H. & Yu, H. Human Bub1 protects centromeric sister-chromatid cohesion through shugoshin during mitosis. Proc. Natl Acad. Sci. USA 101, 18012–18017 (2004).Article  CAS  PubMed  PubMed Central  Google Scholar McGuinness, B. E., Hirota, T., Kudo, N. R., Peters, J.-M. & Nasmyth, K. Shugoshin prevents dissociation of cohesin from centromeres during mitosis in vertebrate cells. PLoS Biol. 3, e86 (2005).Article  PubMed  PubMed Central  Google Scholar Kitajima, T. S., Kawashima, S. A. & Watanabe, Y. The conserved kinetochore protein shugoshin protects centromeric cohesion during meiosis. Nature 427, 510–517 (2004).Article  CAS  PubMed  Google Scholar Liu, H., Rankin, S. & Yu, H. Phosphorylation-enabled binding of SGO1–PP2A to cohesin protects sororin and centromeric cohesion during mitosis. Nat. Cell Biol. 15, 40–49 (2013).Article  CAS  PubMed  Google Scholar Sen Gupta, A. et al. Defining a core configuration for human centromeres during mitosis. Nat. Commun. 14, 7947 (2023).Article  PubMed  PubMed Central  Google Scholar Sakuno, T., Tada, K. & Watanabe, Y. Kinetochore geometry defined by cohesion within the centromere. Nature 458, 852–858 (2009).Article  CAS  PubMed  Google Scholar Paldi, F. et al. Convergent genes shape budding yeast pericentromeres. Nature 582, 119–123 (2020).Article  CAS  PubMed  PubMed Central  Google Scholar Peters, J.-M. The anaphase promoting complex/cyclosome: a machine designed to destroy. Nat. Rev. Mol. Cell Biol. 7, 644–656 (2006).Article  CAS  PubMed  Google Scholar Ciosk, R. et al. An ESP1/PDS1 complex regulates loss of sister chromatid cohesion at the metaphase to anaphase transition in yeast. Cell 93, 1067–1076 (1998).Article  CAS  PubMed  Google Scholar Hornig, N. C. D., Knowles, P. P., McDonald, N. Q. & Uhlmann, F. The dual mechanism of separase regulation by securin. Curr. Biol. 12, 973–982 (2002).Article  CAS  PubMed  Google Scholar Waizenegger, I. C., Giménez-Abián, J. F., Wernic, D. & Peters, J.-M. Regulation of human separase by securin binding and autocleavage. Curr. Biol. 12, 1368–1378 (2002).Article  CAS  PubMed  Google Scholar Waizenegger, I. C., Hauf, S., Meinke, A. & Peters, J. M. Two distinct pathways remove mammalian cohesin from chromosome arms in prophase and from centromeres in anaphase. Cell 103, 399–410 (2000).Article  CAS  PubMed  Google Scholar Hauf, S., Waizenegger, I. C. & Peters, J. M. Cohesin cleavage by separase required for anaphase and cytokinesis in human cells. Science 293, 1320–1323 (2001).Article  CAS  PubMed  Google Scholar Uhlmann, F., Lottspeich, F. & Nasmyth, K. Sister-chromatid separation at anaphase onset is promoted by cleavage of the cohesin subunit Scc1. Nature 400, 37–42 (1999).Article  CAS  PubMed  Google Scholar Lin, Z., Luo, X. & Yu, H. Structural basis of cohesin cleavage by separase. Nature 532, 131–134 (2016).Article  CAS  PubMed  PubMed Central  Google Scholar Stemmann, O., Zou, H., Gerber, S. A., Gygi, S. P. & Kirschner, M. W. Dual inhibition of sister chromatid separation at metaphase. Cell 107, 715–726 (2001).Article  CAS  PubMed  Google Scholar Gorr, I. H., Boos, D. & Stemmann, O. Mutual inhibition of separase and Cdk1 by two-step complex formation. Mol. Cell 19, 135–141 (2005).Article  CAS  PubMed  Google Scholar Yu, J. et al. Structural basis of human separase regulation by securin and CDK1–cyclin B1. Nature 596, 138–142 (2021).Article  CAS  PubMed  PubMed Central  Google Scholar Hellmuth, S., Gómez-H, L., Pendás, A. M. & Stemmann, O. Securin-independent regulation of separase by checkpoint-induced shugoshin–MAD2. Nature 580, 536–541 (2020).Article  CAS  PubMed  Google Scholar Daum, J. R. et al. Cohesion fatigue induces chromatid separation in cells delayed at metaphase. Curr. Biol. 21, 1018–1024 (2011).Article  CAS  PubMed  PubMed Central  Google Scholar Petronczki, M., Siomos, M. F. & Nasmyth, K. Un Ménage à Quatre: the molecular biology of chromosome segregation in meiosis. Cell 112, 423–440 (2003).Article  CAS  PubMed  Google Scholar Zickler, D. & Kleckner, N. Meiosis: dances between homologs. Annu. Rev. Genet. 57, 1–63 (2023).Article  CAS  PubMed  Google Scholar Klein, F. et al. A central role for cohesins in sister chromatid cohesion, formation of axial elements, and recombination during yeast meiosis. Cell 98, 91–103 (1999).Article  CAS  PubMed  Google Scholar Watanabe, Y. & Nurse, P. Cohesin Rec8 is required for reductional chromosome segregation at meiosis. Nature 400, 461–464 (1999).Article  CAS  PubMed  Google Scholar Biswas, U., Hempel, K., Llano, E., Pendas, A. & Jessberger, R. Distinct roles of meiosis-specific cohesin complexes in mammalian spermatogenesis. PLoS Genet. 12, e1006389 (2016).Article  PubMed  PubMed Central  Google Scholar Prieto, I. et al. Mammalian STAG3 is a cohesin specific to sister chromatid arms in meiosis I. Nat. Cell Biol. 3, 761–766 (2001).Article  CAS  PubMed  Google Scholar Gerton, J. L. & Hawley, R. S. Homologous chromosome interactions in meiosis: diversity amidst conservation. Nat. Rev. Genet. 6, 477–487 (2005).Article  CAS  PubMed  Google Scholar Grey, C. & de Massy, B. Chromosome organization in early meiotic prophase. Front. Cell Dev. Biol. 9, 688878 (2021).Article  PubMed  PubMed Central  Google Scholar Zickler, D. & Kleckner, N. Recombination, pairing, and synapsis of homologs during meiosis. Cold Spring Harb. Perspect. Biol. 7, a016626 (2015).Article  PubMed  PubMed Central  Google Scholar Zickler, D. & Kleckner, N. Meiotic chromosomes: integrating structure and function. Annu. Rev. Genet. 33, 603–754 (1999).Article  CAS  PubMed  Google Scholar Ur, S. N. & Corbett, K. D. Architecture and dynamics of meiotic chromosomes. Annu. Rev. Genet. 55, 497–526 (2021).Article  CAS  PubMed  Google Scholar Buonomo, S. B. C. et al. Disjunction of homologous chromosomes in meiosis I depends on proteolytic cleavage of the meiotic cohesin Rec8 by separin. Cell 103, 387–398 (2000).Article  CAS  PubMed  Google Scholar Bickel, S. E., Orr-Weaver, T. L. & Balicky, E. M. The sister-chromatid cohesion protein ORD is required for chiasma maintenance in Drosophila oocytes. Curr. Biol. 12, 925–929 (2002).Article  CAS  PubMed  Google Scholar Moore, D. P. & Orr-Weaver, T. L. in Current Topics in Developmental Biology Vol. 37 (ed. Handel, M. A.) Ch. 8, 263–299 (Academic, 1997).Crawley, O. et al. Cohesin-interacting protein WAPL-1 regulates meiotic chromosome structure and cohesion by antagonizing specific cohesin complexes. eLife 5, e10851 (2016).Article  PubMed  PubMed Central  Google Scholar Brieño-Enríquez, M. A. et al. Cohesin removal along the chromosome arms during the first meiotic division depends on a NEK1-PP1γ-WAPL axis in the mouse. Cell Rep. 17, 977–986 (2016).Article  PubMed  PubMed Central  Google Scholar De, K., Sterle, L., Krueger, L., Yang, X. & Makaroff, C. A. Arabidopsis thaliana WAPL is essential for the prophase removal of cohesin during meiosis. PLoS Genet. 10, e1004497 (2014).Article  PubMed  PubMed Central  Google Scholar Watanabe, Y. Geometry and force behind kinetochore orientation: lessons from meiosis. Nat. Rev. Mol. Cell Biol. 13, 370–382 (2012).Article  CAS  PubMed  Google Scholar Parra, M. T. et al. Involvement of the cohesin Rad21 and SCP3 in monopolar attachment of sister kinetochores during mouse meiosis I. J. Cell Sci. 117, 1221–1234 (2004).Article  CAS  PubMed  Google Scholar Yokobayashi, S. & Watanabe, Y. The kinetochore protein Moa1 enables cohesion-mediated monopolar attachment at meiosis I. Cell 123, 803–817 (2005).Article  CAS  PubMed  Google Scholar Tachibana-Konwalski, K. et al. Spindle assembly checkpoint of oocytes depends on a kinetochore structure determined by cohesin in meiosis I. Curr. Biol. 23, 2534–2539 (2013).Article  CAS  PubMed  PubMed Central  Google Scholar Mehta, G., Anbalagan, G. K., Bharati, A. P., Gadre, P. & Ghosh, S. K. An interplay between shugoshin and Spo13 for centromeric cohesin protection and sister kinetochore mono-orientation during meiosis I in Saccharomyces cerevisiae. Curr. Genet. 64, 1141–1152 (2018).Article  CAS  PubMed  Google Scholar Gryaznova, Y. et al. Kinetochore individualization in meiosis I is required for centromeric cohesin removal in meiosis II. EMBO J. 40, e106797 (2021).Article  CAS  PubMed  PubMed Central  Google Scholar Kim, J. et al. Meikin is a conserved regulator of meiosis-I-specific kinetochore function. Nature 517, 466–471 (2015).Article  CAS  PubMed  Google Scholar Ma, W., Zhou, J., Chen, J., Carr, A. M. & Watanabe, Y. Meikin synergizes with shugoshin to protect cohesin Rec8 during meiosis I. Genes Dev. 35, 692–697 (2021).Article  CAS  PubMed  PubMed Central  Google Scholar Maier, N. K., Ma, J., Lampson, M. A. & Cheeseman, I. M. Separase cleaves the kinetochore protein Meikin at the meiosis I/II transition. Dev. Cell 56, 2192–2206.e8 (2021).Article  CAS  PubMed  PubMed Central  Google Scholar Kitajima, T. S., Miyazaki, Y., Yamamoto, M. & Watanabe, Y. Rec8 cleavage by separase is required for meiotic nuclear divisions in fission yeast. EMBO J. 22, 5643–5653 (2003).Article  CAS  PubMed  PubMed Central  Google Scholar Kudo, N. R. et al. Resolution of chiasmata in oocytes requires separase-mediated proteolysis. Cell 126, 135–146 (2006).Article  CAS  PubMed  Google Scholar Tachibana-Konwalski, K. et al. Rec8-containing cohesin maintains bivalents without turnover during the growing phase of mouse oocytes. Genes Dev. 24, 2505–2516 (2010).Article  CAS  PubMed  PubMed Central  Google Scholar Terret, M. E. et al. The meiosis I-to-meiosis II transition in mouse oocytes requires separase activity. Curr. Biol. 13, 1797–1802 (2003).Article  CAS  PubMed  Google Scholar Thomas, C. et al. A prometaphase mechanism of securin destruction is essential for meiotic progression in mouse oocytes. Nat. Commun. 12, 4322 (2021).Article  CAS  PubMed  PubMed Central  Google Scholar Katis, V. L., Galova, M., Rabitsch, K. P., Gregan, J. & Nasmyth, K. Maintenance of cohesin at centromeres after meiosis I in budding yeast requires a kinetochore-associated protein related to MEI-S332. Curr. Biol. 14, 560–572 (2004).Article  CAS  PubMed  Google Scholar Marston, A. L., Tham, W.-H., Shah, H. & Amon, A. A genome-wide screen identifies genes required for centromeric cohesion. Science 303, 1367–1370 (2004).Article  CAS  PubMed  Google Scholar Lee, B. H., Kiburz, B. M. & Amon, A. Spo13 maintains centromeric cohesion and kinetochore coorientation during meiosis I. Curr. Biol. 14, 2168–2182 (2004).Article  CAS  PubMed  Google Scholar Hamant, O. et al. A REC8-dependent plant shugoshin is required for maintenance of centromeric cohesion during meiosis and has no mitotic functions. Curr. Biol. 15, 948–954 (2005).Article  CAS  PubMed  Google Scholar Llano, E. et al. Shugoshin-2 is essential for the completion of meiosis but not for mitotic cell division in mice. Genes Dev. 22, 2400–2413 (2008).Article  CAS  PubMed  PubMed Central  Google Scholar Lee, J. et al. Unified mode of centromeric protection by shugoshin in mammalian oocytes and somatic cells. Nat. Cell Biol. 10, 42–52 (2008).Article  CAS  PubMed  Google Scholar Rattani, A. et al. Sgol2 provides a regulatory platform that coordinates essential cell cycle processes during meiosis I in oocytes. eLife 2, e01133 (2013).Article  PubMed  PubMed Central  Google Scholar Rabitsch, K. P. et al. Two fission yeast homologs of Drosophila Mei-S332 are required for chromosome segregation during meiosis I and II. Curr. Biol. 14, 287–301 (2004).Article  CAS  PubMed  Google Scholar Riedel, C. G. et al. Protein phosphatase 2A protects centromeric sister chromatid cohesion during meiosis I. Nature 441, 53–61 (2006).Article  CAS  PubMed  Google Scholar Kitajima, T. S. et al. Shugoshin collaborates with protein phosphatase 2A to protect cohesin. Nature 441, 46–52 (2006).Article  CAS  PubMed  Google Scholar Tang, Z. et al. PP2A is required for centromeric localization of Sgo1 and proper chromosome segregation. Dev. Cell 10, 575–585 (2006).Article  CAS  PubMed  Google Scholar Katis, V. L. et al. Rec8 phosphorylation by casein kinase 1 and Cdc7-Dbf4 kinase regulates cohesin cleavage by separase during meiosis. Dev. Cell 18, 397–409 (2010).Article  CAS  PubMed  PubMed Central  Google Scholar Brar, G. A. et al. Rec8 phosphorylation and recombination promote the step-wise loss of cohesins in meiosis. Nature 441, 532–536 (2006).Article  CAS  PubMed  Google Scholar Ishiguro, T., Tanaka, K., Sakuno, T. & Watanabe, Y. Shugoshin–PP2A counteracts casein-kinase-1-dependent cleavage of Rec8 by separase. Nat. Cell Biol. 12, 500–506 (2010).Article  CAS  PubMed  Google Scholar Attner, M. A., Miller, M. P., Ee, L., Elkin, S. K. & Amon, A. Polo kinase Cdc5 is a central regulator of meiosis I. Proc. Natl Acad. Sci. USA 110, 14278–14283 (2013).Article  CAS  PubMed  PubMed Central  Google Scholar Nikalayevich, E. et al. Aurora B/C-dependent phosphorylation promotes Rec8 cleavage in mammalian oocytes. Curr. Biol. 32, 2281–2290.e4 (2022).Article  CAS  PubMed  Google Scholar Chiang, T., Duncan, F. E., Schindler, K., Schultz, R. M. & Lampson, M. A. Evidence that weakened centromere cohesion is a leading cause of age-related aneuploidy in oocytes. Curr. Biol. 20, 1522–1528 (2010).Article  CAS  PubMed  PubMed Central  Google Scholar Lister, L. M. et al. Age-related meiotic segregation errors in mammalian oocytes are preceded by depletion of cohesin and Sgo2. Curr. Biol. 20, 1511–1521 (2010).Article  CAS  PubMed  Google Scholar Liu, L. & Keefe, D. L. Defective cohesin is associated with age-dependent misaligned chromosomes in oocytes. Reprod. Biomed. Online 16, 103–112 (2008).Article  CAS  PubMed  Google Scholar Sakakibara, Y. et al. Bivalent separation into univalents precedes age-related meiosis I errors in oocytes. Nat. Commun. 6, 7550 (2015).Article  PubMed  Google Scholar Zielinska, A. P., Holubcova, Z., Blayney, M., Elder, K. & Schuh, M. Sister kinetochore splitting and precocious disintegration of bivalents could explain the maternal age effect. eLife 4, e11389 (2015).Article  PubMed  PubMed Central  Google Scholar Nagaoka, S. I., Hassold, T. J. & Hunt, P. A. Human aneuploidy: mechanisms and new insights into an age-old problem. Nat. Rev. Genet. 13, 493–504 (2012).Article  CAS  PubMed  PubMed Central  Google Scholar Burkhardt, S. et al. Chromosome cohesion established by Rec8-cohesin in fetal oocytes is maintained without detectable turnover in oocytes arrested for months in mice. Curr. Biol. 26, 678–685 (2016).Article  CAS  PubMed  PubMed Central  Google Scholar Zielinska, A. P. et al. Meiotic kinetochores fragment into multiple lobes upon cohesin loss in aging eggs. Curr. Biol. 29, 3749–3765.e7 (2019).Article  CAS  PubMed  PubMed Central  Google Scholar Bellou, E. et al. Chromosome architecture and low cohesion bias acrocentric chromosomes towards aneuploidy during mammalian meiosis. Nat. Commun. 15, 10713 (2024).Article  CAS  PubMed  PubMed Central  Google Scholar Mihalas, B. P. et al. Age-dependent loss of cohesion protection in human oocytes. Curr. Biol. 34, 117–131.e5 (2024).Article  CAS  PubMed  Google Scholar Sharma, N. et al. Changes in DNA repair compartments and cohesin loss promote DNA damage accumulation in aged oocytes. Curr. Biol. 34, 5131–5148.e6 (2024).Article  CAS  PubMed  Google Scholar Chatzidaki, E. E. et al. Ovulation suppression protects against chromosomal abnormalities in mouse eggs at advanced maternal age. Curr. Biol. 31, 4038–4051.e7 (2021).Article  CAS  PubMed  Google Scholar