Method of the year 2013. Nat. Methods 11, 1 (2014).Marx, V. Method of the year: spatially resolved transcriptomics. Nat. Methods 18, 9–14 (2021).Article CAS PubMed Google Scholar Method of the year 2024: spatial proteomics. Nat. Methods 21, 2195–2196 (2024).The Cancer Genome Atlas Research Network et al. The cancer genome atlas pan-cancer analysis project. Nat. Genet. 45, 1113–1120 (2013).Article Google Scholar de Bruijn, I. et al. Sharing data from the Human Tumor Atlas Network through standards, infrastructure and community engagement. Nat. Methods 22, 664–671 (2025).Article PubMed PubMed Central Google Scholar Jain, S. et al. Advances and prospects for the Human BioMolecular Atlas Program (HuBMAP). Nat. Cell Biol. 25, 1089–1100 (2023).Article CAS PubMed PubMed Central Google Scholar Rozenblatt-Rosen, O., Stubbington, M. J., Regev, A. & Teichmann, S. A. The Human Cell Atlas: from vision to reality. Nature 550, 451–453 (2017).Article CAS PubMed Google Scholar Regev, A. et al. The human cell atlas. eLife 6, e27041 (2017).Article PubMed PubMed Central Google Scholar Zhang, J. et al. Tahoe-100M: a giga-scale single-cell perturbation atlas for context-dependent gene function and cellular modeling. Preprint at bioRxiv https://doi.org/10.1101/2025.02.20.639398 (2025).Klughammer, J. et al. A multi-modal single-cell and spatial expression map of metastatic breast cancer biopsies across clinicopathological features. Nat. Med. 30, 3236–3249 (2024).Article CAS PubMed PubMed Central Google Scholar Mo, C. K. et al. Tumour evolution and microenvironment interactions in 2D and 3D space. Nature 634, 1178–1186 (2024).Article CAS PubMed PubMed Central Google Scholar Greenbaum, S. et al. A spatially resolved timeline of the human maternal–fetal interface. Nature 619, 595–605 (2023).Article CAS PubMed PubMed Central Google Scholar Ren, J. et al. Spatiotemporally resolved transcriptomics reveals the subcellular RNA kinetic landscape. Nat. Methods 20, 695–705 (2023).Article CAS PubMed PubMed Central Google Scholar Wagner, J. et al. A single-cell atlas of the tumor and immune ecosystem of human breast cancer. Cell 177, 1330–1345 (2019).Article CAS PubMed PubMed Central Google Scholar Paik, D. T., Cho, S., Tian, L., Chang, H. Y. & Wu, J. C. Single-cell RNA sequencing in cardiovascular development, disease and medicine. Nat. Rev. Cardiol. 17, 457–473 (2020).Article CAS PubMed PubMed Central Google Scholar Segerstolpe, Å et al. Single-cell transcriptome profiling of human pancreatic islets in health and type 2 diabetes. Cell Metab. 24, 593–607 (2016).Article CAS PubMed PubMed Central Google Scholar Li, H. et al. A comprehensive benchmarking with practical guidelines for cellular deconvolution of spatial transcriptomics. Nat. Commun. 14, 1548 (2023).Article PubMed PubMed Central Google Scholar Dill, K. A. & MacCallum, J. L. The protein-folding problem, 50 years on. Science 338, 1042–1046 (2012).Article CAS PubMed Google Scholar Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).Article CAS PubMed PubMed Central Google Scholar Humphreys, I. R. et al. Computed structures of core eukaryotic protein complexes. Science 374, eabm4805 (2021).Article CAS PubMed PubMed Central Google Scholar Bryant, P. et al. Predicting the structure of large protein complexes using AlphaFold and Monte Carlo tree search. Nat. Commun. 13, 6028 (2022).Article CAS PubMed PubMed Central Google Scholar Mazurenko, S., Prokop, Z. & Damborsky, J. Machine learning in enzyme engineering. ACS Catal. 10, 1210–1223 (2019).Article Google Scholar Dauparas, J. et al. Robust deep learning–based protein sequence design using ProteinMPNN. Science 378, 49–56 (2022).Article CAS PubMed PubMed Central Google Scholar Zhou, J. & Troyanskaya, O. G. Predicting effects of noncoding variants with deep learning–based sequence model. Nat. Methods 12, 931–934 (2015).Article CAS PubMed PubMed Central Google Scholar Greenwald, N. F. et al. Whole-cell segmentation of tissue images with human-level performance using large-scale data annotation and deep learning. Nat. Biotechnol. 40, 555–565 (2022).Article CAS PubMed Google Scholar Esteva, A. et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 542, 115–118 (2017).Article CAS PubMed PubMed Central Google Scholar Ardila, D. et al. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat. Med. 25, 954–961 (2019).Article CAS PubMed Google Scholar Zeng, Z., Li, Y., Li, Y. & Luo, Y. Statistical and machine learning methods for spatially resolved transcriptomics data analysis. Genome Biol. 23, 83 (2022).Article PubMed PubMed Central Google Scholar Kelly, C. J., Karthikesalingam, A., Suleyman, M., Corrado, G. & King, D. Key challenges for delivering clinical impact with artificial intelligence. BMC Med. 17, 1–9 (2019).Article CAS Google Scholar Greener, J. G., Kandathil, S. M., Moffat, L. & Jones, D. T. A guide to machine learning for biologists. Nat. Rev. Mol. Cell Biol. 23, 40–55 (2022).Article CAS PubMed Google Scholar Biancalani, T. et al. Deep learning and alignment of spatially resolved single-cell transcriptomes with Tangram. Nat. Methods 18, 1352–1362 (2021).Article PubMed PubMed Central Google Scholar Tung, P.-Y. et al. Batch effects and the effective design of single-cell gene expression studies. Sci. Rep. 7, 39921 (2017).Article CAS PubMed PubMed Central Google Scholar Saelens, W., Cannoodt, R., Todorov, H. & Saeys, Y. A comparison of single-cell trajectory inference methods. Nat. Biotechnol. 37, 547–554 (2019).Article CAS PubMed Google Scholar Dirac, P. A. M. The Principles of Quantum Mechanics (Oxford Univ. Press, 1981).Heisenberg, W. in Physicist’s Conception of Nature (ed. Heisenberg, W.) (Harcourt, Brace & co., 1958).Levine, H. et al. Parallel implementation of high-fidelity multiqubit gates with neutral atoms. Phys. Rev. Lett. 123, 170503 (2019).Article CAS PubMed Google Scholar Burkard, G., Ladd, T. D., Pan, A., Nichol, J. M. & Petta, J. R. Semiconductor spin qubits. Rev. Mod. Phys. 95, 025003 (2023).Article CAS Google Scholar Conlon, A., Pellegrino, D., Slingerland, J. K., Dooley, S. & Kells, G. Error generation and propagation in Majorana-based topological qubits. Phys. Rev. B 100, 134307 (2019).Article CAS Google Scholar Kozhanov, A. et al. Next-generation trapped-ion quantum computing system. In Optica Quantum 2.0 Conference and Exhibition QM3A-2 (Optical Publishing Group, 2023).Bravyi, S., Dial, O., Gambetta, J. M., Gil, D. & Nazario, Z. The future of quantum computing with superconducting qubits. J. Appl. Phys. 132, 160902 (2022).Article CAS Google Scholar Chamberland, C. et al. Building a fault-tolerant quantum computer using concatenated cat codes. PRX Quantum 3, 010329 (2022).Article Google Scholar Martinis, J. M. Surface loss calculations and design of a superconducting transmon qubit with tapered wiring. npj Quantum Inf. 8, 26 (2022).Chow, J., Dial, O. & Gambetta, J. IBM quantum breaks the 100-qubit processor barrier. IBM Research Blog https://www.ibm.com/quantum/blog/127-qubit-quantum-processor-eagle (2022).Google Quantum, A. I. & Collaborators Quantum error correction below the surface code threshold. Nature 638, 920–926 (2025).Bravyi, S. et al. High-threshold and low-overhead fault-tolerant quantum memory. Nature 627, 778–782 (2024).Article CAS PubMed PubMed Central Google Scholar Cross, A. et al. OpenQASM 3: a broader and deeper quantum assembly language. ACM Trans. Quantum Comput. 3, 1–50 (2022).Article Google Scholar Jurcevic, P. et al. Demonstration of quantum volume 64 on a superconducting quantum computing system. Quantum Sci. Technol. 6, 025020 (2021).Article Google Scholar Piveteau, C. & Sutter, D. Circuit knitting with classical communication. IEEE Trans. Inf. Theor. 70, 2734–2745 (2024).Article Google Scholar Patti, T. L., Shehab, O., Najafi, K. & Yelin, S. F. Markov chain Monte Carlo enhanced variational quantum algorithms. Quantum Sci. Technol. 8, 015019 (2022).Article Google Scholar Van Den Berg, E., Minev, Z. K., Kandala, A. & Temme, K. Probabilistic error cancellation with sparse Pauli–Lindblad models on noisy quantum processors. Nat. Phys. 19, 1116–1121 (2023).Article Google Scholar Kim, Y. et al. Scalable error mitigation for noisy quantum circuits produces competitive expectation values. Nat. Phys. 19, 752–759 (2023).Article CAS Google Scholar Caro, M. C. et al. Generalization in quantum machine learning from few training data. Nat. Commun. 13, 4919 (2022).Article CAS PubMed PubMed Central Google Scholar Cerezo, M., Verdon, G., Huang, H.-Y., Cincio, L. & Coles, P. J. Challenges and opportunities in quantum machine learning. Nat. Comput. Sci. 2, 567–576 (2022).Article CAS PubMed Google Scholar Abbas, A. et al. Challenges and opportunities in quantum optimization. Nat. Rev. Phys. 6, 718–735 (2024).Article Google Scholar Krunic, Z., Flöther, F. F., Seegan, G., Earnest-Noble, N. D. & Shehab, O. Quantum kernels for real-world predictions based on electronic health records. IEEE Trans. Quantum Eng. 3, 1–11 (2022).Article Google Scholar Utro, F., Bose, A., Wang, R., Dubovitskii, V. & Parida, L. A perspective on quantum computing for analyzing cell-cell communication networks. In Conference on Intelligent Systems for Molecular Biology (ISMB, 2024).Doga, H. et al. How can quantum computing be applied in clinical trial design and optimization? Trends Pharmacol. Sci. 45, 880–891 (2024).Article CAS PubMed Google Scholar Doga, H. et al. A perspective on protein structure prediction using quantum computers. J. Chem. Theory Comput. 20, 3359–3378 (2024).Article CAS PubMed PubMed Central Google Scholar Flöther, F. F. et al. How quantum computing can enhance biomarker discovery. Patterns 6, 101236 (2025).Article PubMed PubMed Central Google Scholar Dubovitskii, V., Bose, A., Utro, F. & Pardia, L. On quantum random walks in biomolecular networks. Preprint at https://doi.org/10.48550/arXiv.2506.06514 (2025).Moses, L. & Pachter, L. Museum of spatial transcriptomics. Nat. Methods 19, 534–546 (2022).Article CAS PubMed Google Scholar Wang, Z. Cell segmentation for image cytometry: advances, insufficiencies, and challenges. Cytom. A 95, 708–711 (2019).Article Google Scholar Pang, M., Roy, T. K., Wu, X. & Tan, K. CelloType: a unified model for segmentation and classification of tissue images. Nat. Methods 22, 348–357 (2025).Article CAS PubMed Google Scholar Petukhov, V. et al. Cell segmentation in imaging-based spatial transcriptomics. Nat. Biotechnol. 40, 345–354 (2022).Article CAS PubMed Google Scholar Chen, H., Li, D. & Bar-Joseph, Z. SCS: cell segmentation for high-resolution spatial transcriptomics. Nat. Methods 20, 1237–1243 (2023).Article CAS PubMed Google Scholar Moen, E. et al. Deep learning for cellular image analysis. Nat. Methods 16, 1233–1246 (2019).Article CAS PubMed PubMed Central Google Scholar Walker, B. L., Cang, Z., Ren, H., Bourgain-Chang, E. & Nie, Q. Deciphering tissue structure and function using spatial transcriptomics. Commun. Biol. 5, 220 (2022).Article PubMed PubMed Central Google Scholar Nitzan, M., Karaiskos, N., Friedman, N. & Rajewsky, N. Gene expression cartography. Nature 576, 132–137 (2019).Article CAS PubMed Google Scholar Pesah, A. et al. Absence of barren plateaus in quantum convolutional neural networks. Phys. Rev. X 11, 041011 (2021).CAS Google Scholar Hur, T., Kim, L. & Park, D. K. Quantum convolutional neural network for classical data classification. Quantum Mach. Intell. 4, 3 (2022).Article Google Scholar Born, J. et al. Quantum doubly stochastic transformers. Preprint at https://doi.org/10.48550/arXiv.2504.16275 (2025).Zhao, L., Wan, L. & Luo, M.-X. Quantum algorithm for Markov Random Fields structure learning by information theoretic properties. Phys. Scr. 100, 075121 (2025).Article CAS Google Scholar Khatri, N., Matos, G., Coopmans, L. & Clark, S. Quixer: a quantum transformer model. Preprint at https://doi.org/10.48550/arXiv.2406.04305 (2024).Cherrat, E. A. et al. Quantum vision transformers. Quantum 8, 1265 (2024).Article Google Scholar Jayakody, M. N., Meena, C. & Pradhan, P. Revisiting one-dimensional discrete-time quantum walks with general coin. Phys. Open. 17, 100189 (2023).Article Google Scholar Mariella, N. et al. Quantum theory and application of contextual optimal transport. In Proc. 41st International Conference on Machine Learning Article 1416, 34822–34845 (ACM, 2024).Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902 e21 (2019).Article CAS PubMed PubMed Central Google Scholar Palla, G. et al. Squidpy: a scalable framework for spatial omics analysis. Nat. Methods 19, 171–178 (2022).Article CAS PubMed PubMed Central Google Scholar Dries, R. et al. Giotto: a toolbox for integrative analysis and visualization of spatial expression data. Genome Biol. 22, 78 (2021).Article CAS PubMed PubMed Central Google Scholar Li, M. M., Huang, K. & Zitnik, M. Graph representation learning in biomedicine and healthcare. Nat. Biomed. Eng. 6, 1353–1369 (2022).Article PubMed PubMed Central Google Scholar Jaume, G. et al. Quantifying explainers of graph neural networks in computational pathology. In Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition 8106–8116 (CVPR, 2021).Liu, T. et al. A comprehensive overview of graph neural network-based approaches to clustering for spatial transcriptomics. Comput. Struct. Biotechnol. J. 23, 106–128 (2024).Article PubMed Google Scholar Li, Y. & Luo, Y. STdGCN: spatial transcriptomic cell-type deconvolution using graph convolutional networks. Genome Biol. 25, 206 (2024).Article CAS PubMed PubMed Central Google Scholar Pati, P. et al. Hierarchical graph representations in digital pathology. Med. image Anal. 75, 102264 (2022).Article PubMed Google Scholar Cook, S. A. The complexity of theorem-proving procedures. Log. Autom. Comput. Complex. https://doi.org/10.1145/3588287.3588297 (1971).Article Google Scholar Sun, S., Zhu, J. & Zhou, X. Statistical analysis of spatial expression patterns for spatially resolved transcriptomic studies. Nat. Methods 17, 193–200 (2020).Article CAS PubMed PubMed Central Google Scholar Govek, K. W., Yamajala, V. S. & Camara, P. G. Clustering-independent analysis of genomic data using spectral simplicial theory. PLoS Comput. Biol. 15, e1007509 (2019).Article PubMed PubMed Central Google Scholar Miller, B. F., Bambah-Mukku, D., Dulac, C., Zhuang, X. & Fan, J. Characterizing spatial gene expression heterogeneity in spatially resolved single-cell transcriptomic data with nonuniform cellular densities. Genome Res. 31, 1843–1855 (2021).Article CAS PubMed PubMed Central Google Scholar Armingol, E., Officer, A., Harismendy, O. & Lewis, N. E. Deciphering cell-cell interactions and communication from gene expression. Nat. Rev. Genet. 22, 71–88 (2021).Article CAS PubMed Google Scholar Arnol, D., Schapiro, D., Bodenmiller, B., Saez-Rodriguez, J. & Stegle, O. Modeling cell-cell interactions from spatial molecular data with spatial variance component analysis. Cell Rep. 29, 202–211 e6 (2019).Article CAS PubMed PubMed Central Google Scholar Tanevski, J., Flores, R. O. R., Gabor, A., Schapiro, D. & Saez-Rodriguez, J. Explainable multiview framework for dissecting spatial relationships from highly multiplexed data. Genome Biol. 23, 97 (2022).Article PubMed PubMed Central Google Scholar Sahin, M. E. et al. Efficient parameter optimisation for quantum kernel alignment: a sub-sampling approach in variational training. Quantum 8, 1502 (2024).Article Google Scholar Ray, A. et al. Hybrid quantum–classical graph neural networks for tumor classification in digital pathology. 2024 IEEE Int. Conf. Quantum Comput. Eng. 01, 1611–1616 (2024).Article Google Scholar Mirzasoleiman, B., Bilmes, J. & Leskovec, J. Coresets for data-efficient training of machine learning models. In Proc. 37th International Conference on Machine Learning Vol. 119, 569–579 (PMLR, 2020).Layden, D. et al. Quantum-enhanced Markov chain Monte Carlo. Nature 619, 282–287 (2023).Article CAS PubMed Google Scholar Macaluso, A., Clissa, L., Lodi, S. & Sartori, C. An efficient quantum algorithm for ensemble classification using bagging. IET Quantum Commun. 5, 253–268 (2024).Article Google Scholar Rhrissorrakrai, K. et al. Quantum ensembling methods for healthcare and life science. Preprint at https://doi.org/10.48550/arXiv.2506.02213 (2025).Wang, Y., Wang, X., Qi, B. & Dong, D. Supervised-learning guarantee for quantum AdaBoost. Phys. Rev. Appl. 22, 054001 (2024).Article CAS Google Scholar Berry, D. W. et al. Analyzing prospects for quantum advantage in topological data analysis. PRX Quantum 5, 010319 (2024).Article Google Scholar Hayakawa, R. Quantum algorithm for persistent Betti numbers and topological data analysis. Quantum 6, 873 (2022).Article Google Scholar Lloyd, S., Garnerone, S. & Zanardi, P. Quantum algorithms for topological and geometric analysis of data. Nat. Commun. 7, 10138 (2016).Article CAS PubMed PubMed Central Google Scholar Ding, J., Sharon, N. & Bar-Joseph, Z. Temporal modelling using single-cell transcriptomics. Nat. Rev. Genet. 23, 355–368 (2022).Article CAS PubMed PubMed Central Google Scholar La Manno, G. et al. RNA velocity of single cells. Nature 560, 494–498 (2018).Article PubMed PubMed Central Google Scholar Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386 (2014).Article CAS PubMed PubMed Central Google Scholar Bergen, V., Lange, M., Peidli, S., Wolf, F. A. & Theis, F. J. Generalizing RNA velocity to transient cell states through dynamical modeling. Nat. Biotechnol. 38, 1408–1414 (2020).Article CAS PubMed Google Scholar Teschendorff, A. E. & Enver, T. Single-cell entropy for accurate estimation of differentiation potency from a cell’s transcriptome. Nat. Commun. 8, 15599 (2017).Article CAS PubMed PubMed Central Google Scholar Wolf, F. A. et al. PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome Biol. 20, 1–9 (2019).Article Google Scholar Ji, Z. & Ji, H. TSCAN: pseudo-time reconstruction and evaluation in single-cell RNA-seq analysis. Nucleic Acids Res. 44, e117 (2016).Article PubMed PubMed Central Google Scholar Cao, J. et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature 566, 496–502 (2019).Article CAS PubMed PubMed Central Google Scholar Schiebinger, G. et al. Optimal-transport analysis of single-cell gene expression identifies developmental trajectories in reprogramming. Cell 176, 1517 (2019).Article CAS PubMed PubMed Central Google Scholar Tong, A., Huang, J., Wolf, G., van Dijk, D. & Krishnaswamy, S. TrajectoryNet: a dynamic optimal transport network for modeling cellular dynamics. Proc. Mach. Learn. Res. 119, 9526–9536 (2020).PubMed PubMed Central Google Scholar Chen, R. T., Rubanova, Y., Bettencourt, J. & Duvenaud, D. K. Neural ordinary differential equations. In Proc. 32nd International Conference on Neural Information Processing System 6572–6583 (ACM, 2018).Pham, D. et al. Robust mapping of spatiotemporal trajectories and cell-cell interactions in healthy and diseased tissues. Nat. Commun. 14, 7739 (2023).Article CAS PubMed PubMed Central Google Scholar Ji, Y., Lotfollahi, M., Wolf, F. A. & Theis, F. J. Machine learning for perturbational single-cell omics. Cell Syst. 12, 522–537 (2021).Article CAS PubMed Google Scholar Zhang, J., Larschan, E., Bigness, J. & Singh, R. scNODE: generative model for temporal single cell transcriptomic data prediction. Bioinformatics 40, ii146–ii154 (2024).Article PubMed PubMed Central Google Scholar Lin, C. & Bar-Joseph, Z. Continuous-state HMMs for modeling time-series single-cell RNA-seq data. Bioinformatics 35, 4707–4715 (2019).Article CAS PubMed PubMed Central Google Scholar Niraula, D., El Naqa, I., Tuszynski, J. A. & Gatenby, R. A. Modeling non-genetic information dynamics in cells using reservoir computing. iScience 27, 109614 (2024).Article CAS PubMed PubMed Central Google Scholar Hadaeghi, F. et al. Spatio-temporal feature learning with reservoir computing for T-cell segmentation in live-cell Ca2+ fluorescence microscopy. Sci. Rep. 11, 8233 (2021).Article CAS PubMed PubMed Central Google Scholar Lotfollahi, M., Wolf, F. A. & Theis, F. J. scGen predicts single-cell perturbation responses. Nat. Methods 16, 715–721 (2019).Article CAS PubMed Google Scholar Rood, J. E., Hupalowska, A. & Regev, A. Toward a foundation model of causal cell and tissue biology with a perturbation cell and tissue atlas. Cell 187, 4520–4545 (2024).Article CAS PubMed Google Scholar Jaitin, D. A. et al. Dissecting immune circuits by linking CRISPR-pooled screens with single-cell RNA-Seq. Cell 167, 1883–1896 e15 (2016).Article CAS PubMed Google Scholar McFarland, J. M. et al. Multiplexed single-cell transcriptional response profiling to define cancer vulnerabilities and therapeutic mechanism of action. Nat. Commun. 11, 4296 (2020).Article CAS PubMed PubMed Central Google Scholar Frangieh, C. J. et al. Multimodal pooled Perturb-CITE-seq screens in patient models define mechanisms of cancer immune evasion. Nat. Genet. 53, 332–341 (2021).Article CAS PubMed PubMed Central Google Scholar Xie, S., Duan, J., Li, B., Zhou, P. & Hon, G. C. Multiplexed engineering and analysis of combinatorial enhancer activity in single cells. Mol. Cell 66, 285–299 e5 (2017).Article CAS PubMed Google Scholar Gavriilidis, G. I., Vasileiou, V., Orfanou, A., Ishaque, N. & Psomopoulos, F. A mini-review on perturbation modelling across single-cell omic modalities. Comput. Struct. Biotechnol. J. 23, 1886–1896 (2024).Article CAS PubMed PubMed Central Google Scholar Nicol, P. B. et al. Robust identification of perturbed cell types in single-cell RNA-seq data. Nat. Commun. 15, 7610 (2024).Article CAS PubMed PubMed Central Google Scholar Dann, E., Henderson, N. C., Teichmann, S. A., Morgan, M. D. & Marioni, J. C. Differential abundance testing on single-cell data using k-nearest neighbor graphs. Nat. Biotechnol. 40, 245–253 (2022).Article CAS PubMed Google Scholar Kamimoto, K. et al. Dissecting cell identity via network inference and in silico gene perturbation. Nature 614, 742–751 (2023).Article CAS PubMed PubMed Central Google Scholar Marouf, M. et al. Realistic in silico generation and augmentation of single-cell RNA-seq data using generative adversarial networks. Nat. Commun. 11, 166 (2020).Article CAS PubMed PubMed Central Google Scholar Kingma, D. P. Auto-encoding variational bayes. Preprint at https://doi.org/10.48550/arXiv.1312.6114 (2013).Szałata, A. et al. Transformers in single-cell omics: a review and new perspectives. Nat. Methods 21, 1430–1443 (2024).Article PubMed Google Scholar Bunne, C. et al. Learning single-cell perturbation responses using neural optimal transport. Nat. Methods 20, 1759–1768 (2023).Article CAS PubMed PubMed Central Google Scholar Bunne, C., Schiebinger, G., Krause, A., Regev, A. & Cuturi, M. Optimal transport for single-cell and spatial omics. Nat. Rev. Methods Prim. 4, 58 (2024).Article CAS Google Scholar Cui, H. et al. scGPT: toward building a foundation model for single-cell multi-omics using generative AI. Nat. Methods 21, 1470–1480 (2024).Article CAS PubMed Google Scholar Fu, X. et al. A foundation model of transcription across human cell types. Nature 637, 965–973 (2025).Article CAS PubMed PubMed Central Google Scholar Hao, M. et al. Large-scale foundation model on single-cell transcriptomics. Nat. Methods 16, 4679 (2024).Google Scholar Heimberg, G. et al. A cell atlas foundation model for scalable search of similar human cells. Nature 638, 1085–1094 (2024).Article PubMed PubMed Central Google Scholar Ghazanfar, S. et al. Investigating higher-order interactions in single-cell data with scHOT. Nat. Methods 17, 799–806 (2020).Article CAS PubMed PubMed Central Google Scholar Piatkowski, N. & Zoufal, C. Quantum circuits for discrete graphical models. Quantum Mach. Intell. 6, 37 (2024).Article Google Scholar Ghosh, S., Opala, A., Matuszewski, M., Paterek, T. & Liew, T. C. Quantum reservoir processing. NPJ Quantum Inf. 5, 35 (2019).Article Google Scholar Lukoševičius, M. A practical guide to applying echo state networks. Neural Netw. https://doi.org/10.1007/978-3-642-35289-8_36 (2012).Article Google Scholar Tanaka, G. et al. Recent advances in physical reservoir computing: a review. Neural Netw. 115, 100–123 (2019).Article PubMed Google Scholar Zhu, C., Ehlers, P. J., Nurdin, H. I. & Soh, D. Practical few-atom quantum reservoir computing. Phys. Rev. Research 7, 023290 (2025).Article CAS Google Scholar Situ, H., He, Z., Wang, Y., Li, L. & Zheng, S. Quantum generative adversarial network for generating discrete distribution. Inf. Sci. 538, 193–208 (2020).Article Google Scholar Zoufal, C., Lucchi, A. & Woerner, S. Quantum generative adversarial networks for learning and loading random distributions. NPJ Quantum Inf. 5, 103 (2019).Article Google Scholar Kao, P.-Y. et al. Exploring the advantages of quantum generative adversarial networks in generative chemistry. J. Chem. Inf. Model. 63, 3307–3318 (2023).Article CAS PubMed PubMed Central Google Scholar Wan, K. H., Dahlsten, O., Kristjánsson, H., Gardner, R. & Kim, M. Quantum generalisation of feedforward neural networks. NPJ Quantum Inf. 3, 36 (2017).Article Google Scholar Romero, J., Olson, J. P. & Aspuru-Guzik, A. Quantum autoencoders for efficient compression of quantum data. Quantum Sci. Technol. 2, 045001 (2017).Article Google Scholar Khoshaman, A. et al. Quantum variational autoencoder. Quantum Sci. Technol. 4, 014001 (2018).Article Google Scholar Erbe, R., Stein-O’Brien, G. & Fertig, E. J. Transcriptomic forecasting with neural ordinary differential equations. Patterns 4, 100793 (2023).Article CAS PubMed PubMed Central Google Scholar Choi, M., Flam-Shepherd, D., Kyaw, T. H. & Aspuru-Guzik, A. Learning quantum dynamics with latent neural ordinary differential equations. Phys. Rev. A 105, 042403 (2022).Article CAS Google Scholar Stassen, S. V., Yip, G. G. K., Wong, K. K. Y., Ho, J. W. K. & Tsia, K. K. Generalized and scalable trajectory inference in single-cell omics data with VIA. Nat. Commun. 12, 5528 (2021).Article CAS PubMed PubMed Central Google Scholar Albrecht, B. et al. Quantum feature maps for graph machine learning on a neutral atom quantum processor. Phys. Rev. A 107, 042615 (2023).Article CAS Google Scholar Baysoy, A., Bai, Z., Satija, R. & Fan, R. The technological landscape and applications of single-cell multi-omics. Nat. Rev. Mol. Cell Biol. 24, 695–713 (2023).Article CAS PubMed Google Scholar Cao, K., Bai, X., Hong, Y. & Wan, L. Unsupervised topological alignment for single-cell multi-omics integration. Bioinformatics 36, i48–i56 (2020).Article CAS PubMed PubMed Central Google Scholar Wang, R. H., Wang, J. & Li, S. C. Probabilistic tensor decomposition extracts better latent embeddings from single-cell multiomic data. Nucleic Acids Res. 51, e81 (2023).Article CAS PubMed PubMed Central Google Scholar Cao, Z. J. & Gao, G. Multi-omics single-cell data integration and regulatory inference with graph-linked embedding. Nat. Biotechnol. 40, 1458–1466 (2022).Article CAS PubMed PubMed Central Google Scholar Kartha, V. K. et al. Functional inference of gene regulation using single-cell multi-omics. Cell Genom. 2, 100166 (2022).Article CAS PubMed PubMed Central Google Scholar Szklarczyk, D. et al. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47, D607–D613 (2019).Article CAS PubMed Google Scholar Ma, A. et al. Single-cell biological network inference using a heterogeneous graph transformer. Nat. Commun. 14, 964 (2023).Article CAS PubMed PubMed Central Google Scholar Barabasi, A. L., Gulbahce, N. & Loscalzo, J. Network medicine: a network-based approach to human disease. Nat. Rev. Genet. 12, 56–68 (2011).Article CAS PubMed PubMed Central Google Scholar Luck, K. et al. A reference map of the human binary protein interactome. Nature 580, 402–408 (2020).Article CAS PubMed PubMed Central Google Scholar Maniscalco, S. et al. Quantum network medicine: rethinking medicine with network science and quantum algorithms. Preprint at https://doi.org/10.48550/arXiv.2206.12405 (2022).Saarinen, H., Goldsmith, M., Wang, R.-S., Loscalzo, J. & Maniscalco, S. Disease gene prioritization with quantum walks. Bioinformatics 40, btae513 (2024).Article CAS PubMed PubMed Central Google Scholar Bose, A., Platt, D. E., Haiminen, N. & Parida, L. CuNA: cumulant-based network analysis of genotype-phenotype associations in Parkinson’s disease. Preprint at medRxiv https://doi.org/10.1101/2021.08.02.21261457 (2021).Parida, L. & Ramakrishnan, N. Redescription mining: structure theory and algorithms. In Proc. 20th National Conference on Artificial Intelligence Vol. 2 (ACM, 2005).Bose, A. & Parida, L. Generating cumulant-based risk scores for diseases. US Patent Application No. 202403954 (2023).Gurnari, D. et al. Probing omics data via harmonic persistent homology. Sci. Rep. 15, 38836 (2025).Article PubMed PubMed Central Google Scholar Percus, J. K. Correlation inequalities for Ising spin lattices. Commun. Math. Phys. 40, 283–308 (1975).Article Google Scholar Platt, D. E., Basu, S., Zalloua, P. A. & Parida, L. Characterizing redescriptions using persistent homology to isolate genetic pathways contributing to pathogenesis. BMC Syst. Biol. 10, S10 (2016).Article Google Scholar Gyurik, C., Cade, C. & Dunjko, V. Towards quantum advantage via topological data analysis. Quantum 6, 855 (2022).Article Google Scholar Cui, L., Guo, G., Ng, M. K., Zou, Q. & Qiu, Y. GSTRPCA: irregular tensor singular value decomposition for single-cell multi-omics data clustering. Brief. Bioinform. 26, bbae649 (2024).Article PubMed PubMed Central Google Scholar Hastings, M. B. Classical and quantum algorithms for tensor principal component analysis. Quantum 4, 237 (2020).Article Google Scholar Burch, M. et al. Towards quantum tensor decomposition in biomedical applications. Preprint at https://doi.org/10.48550/arXiv.2502.13140 (2025).Zhou, L., Basso, J. & Mei, S. Statistical estimation in the spiked tensor model via the quantum approximate optimization algorithm. Adv. Neural Inf. Process. Syst. 37, 28537–28588 (2024).Google Scholar Zhu, X., Meng, S., Li, G., Wang, J. & Peng, X. AGImpute: imputation of scRNA-seq data based on a hybrid GAN with dropouts identification. Bioinformatics 40, btae068 (2024).Article CAS PubMed PubMed Central Google Scholar Xu, Y. et al. scIGANs: single-cell RNA-seq imputation using generative adversarial networks. Nucleic Acids Res. 48, e85 (2020).Article CAS PubMed PubMed Central Google Scholar Zeng, J., Wu, Y., Liu, J.-G., Wang, L. & Hu, J. Learning and inference on generative adversarial quantum circuits. Phys. Rev. A 99, 052306 (2019).Article CAS Google Scholar Li, J., Topaloglu, R. O. & Ghosh, S. Quantum generative models for small molecule drug discovery. IEEE Trans. Quantum Eng. 2, 1–8 (2021).Article Google Scholar Huang, H.-L. et al. Experimental quantum generative adversarial networks for image generation. Phys. Rev. Appl. 16, 024051 (2021).Article CAS Google Scholar Abbas, A. et al. The power of quantum neural networks. Nat. Comput. Sci. 1, 403–409 (2021).Article PubMed Google Scholar Peters, R. et al. Quantum Convolutional HLA Immunogenic Peptide Prediction (Q-CHIPP): next-generation neoantigen prediction with quantum neural networks. Preprint at bioRxiv https://doi.org/10.1101/2025.07.29.667313 (2025).Shende, V. V., Bullock, S. S. & Markov, I. L. Synthesis of quantum-logic circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 25, 1000–1010 (2006).Article Google Scholar Plesch, M. & Brukner, Č Quantum-state preparation with universal gate decompositions. Phys. Rev. A 83, 032302 (2011).Article Google Scholar Zhang, X.-M., Li, T. & Yuan, X. Quantum state preparation with optimal circuit depth: implementations and applications. Phys. Rev. Lett. 129, 230504 (2022).Article CAS PubMed Google Scholar Basu, S. et al. Towards quantum-enabled cell-centric therapeutics. Preprint at https://doi.org/10.48550/arXiv.2307.05734 (2023).Moffat, J. G., Vincent, F., Lee, J. A., Eder, J. & Prunotto, M. Opportunities and challenges in phenotypic drug discovery: an industry perspective. Nat. Rev. Drug. Discov. 16, 531–543 (2017).Article CAS PubMed Google Scholar Lin, A. et al. Off-target toxicity is a common mechanism of action of cancer drugs undergoing clinical trials. Sci. Transl. Med. 11, eaaw8412 (2019).Article CAS PubMed PubMed Central Google Scholar Sams-Dodd, F. Target-based drug discovery: is something wrong? Drug. Discov. today 10, 139–147 (2005).Article CAS PubMed Google Scholar Huang, H.-Y. et al. Power of data in quantum machine learning. Nat. Commun. 12, 2631 (2021).Article CAS PubMed PubMed Central Google Scholar Utro, F. et al. Enhanced prediction of CAR T-Cell cytotoxicity with quantum-kernel methods. Preprint at https://doi.org/10.48550/arXiv.2507.22710 (2025).Gambetta, J. Expanding the IBM Quantum roadmap to anticipate the future of quantum-centric supercomputing. IBM Research Blog https://www.ibm.com/quantum/blog/ibm-quantum-roadmap-2025 (2022).AbuGhanem, M. IBM quantum computers: evolution, performance, and future directions. J. Supercomput. 81, 687 (2025).Article Google Scholar Yoder, T. J. et al. Tour de gross: a modular quantum computer based on bivariate bicycle codes. Preprint at https://doi.org/10.48550/arXiv.2506.03094 (2025).Müller, T. et al. Improved belief propagation is sufficient for real-time decoding of quantum memory. Preprint at https://doi.org/10.48550/arXiv.2506.01779 (2025).Mohseni, M. et al. How to build a quantum supercomputer: scaling challenges and opportunities. Preprint at https://doi.org/10.48550/arXiv.2411.10406 (2024).Robledo-Moreno, J. et al. Chemistry beyond the scale of exact diagonalization on a quantum-centric supercomputer. Sci. Adv. 11, eadu9991 (2025).Article CAS PubMed Google Scholar Ding, Q.-M., Huang, Y.-M. & Yuan, X. Molecular docking via quantum approximate optimization algorithm. Phys. Rev. Appl. 21, 034036 (2024).Article CAS Google Scholar Chandarana, P., Hegade, N. N., Montalban, I., Solano, E. & Chen, X. Digitized counterdiabatic quantum algorithm for protein folding. Phys. Rev. Appl. 20, 014024 (2023).Article CAS Google Scholar Lacroix, N. et al. Improving the performance of deep quantum optimization algorithms with continuous gate sets. PRX Quantum 1, 020304 (2020).Article Google Scholar Bose, A., Doga, H., Utro, F. & Parida, L. Quantum-enabled multi-omics analysis. In Conference on Intelligent Systems for Molecular Biology (2024).Ghazi Vakili, M. et al. Quantum-computing-enhanced algorithm unveils potential KRAS inhibitors. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02526-3 (2025).Article PubMed Google Scholar Larocca, M. et al. Barren plateaus in variational quantum computing. Nat. Rev. Phys. 7, 174–189 (2025).Article Google Scholar Du, Y., Hsieh, M.-H., Liu, T. & Tao, D. Expressive power of parametrized quantum circuits. Phys. Rev. Res. 2, 033125 (2020).Article CAS Google Scholar Arrazola, J. M., Delgado, A., Bardhan, B. R. & Lloyd, S. Quantum-inspired algorithms in practice. Quantum 4, 307 (2020).Article Google Scholar Tang, E. Dequantizing algorithms to understand quantum advantage in machine learning. Nat. Rev. Phys. 4, 692–693 (2022).Article Google Scholar Chia, N.-H. et al. Sampling-based sublinear low-rank matrix arithmetic framework for dequantizing quantum machine learning. J. ACM 69, 33:1–33:72 (2022).Article Google Scholar Koch, T. et al. Quantum optimization benchmark library – the intractable decathlon. Preprint at https://doi.org/10.48550/arXiv.2504.03832 (2025).Amitay, Y. et al. CellSighter: a neural network to classify cells in highly multiplexed images. Nat. Commun. 14, 4302 (2023).Article CAS PubMed PubMed Central Google Scholar Angermueller, C., Lee, H. J., Reik, W. & Stegle, O. DeepCpG: accurate prediction of single-cell DNA methylation states using deep learning. Genome Biol. 18, 67 (2017).Article PubMed PubMed Central Google Scholar Sidhom, J.-W., Larman, H. B., Pardoll, D. M. & Baras, A. S. DeepTCR is a deep learning framework for revealing sequence concepts within T-cell repertoires. Nat. Commun. 12, 1605 (2021).Article CAS PubMed PubMed Central Google Scholar Yu, Z., Liu, F. & Li, Y. scTCA: a hybrid Transformer-CNN architecture for imputation and denoising of scDNA-seq data. Brief. Bioinform. https://doi.org/10.1093/bib/bbae577 (2024).Article PubMed PubMed Central Google Scholar De Waele, G., Clauwaert, J., Menschaert, G. & Waegeman, W. CpG transformer for imputation of single-cell methylomes. Bioinformatics 38, 597–603 (2022).Article PubMed Google Scholar Zhou, J. et al. Robust single-cell Hi-C clustering by convolution-and random-walk-based imputation. Proc. Natl Acad. Sci. USA 116, 14011–14018 (2019).Article CAS PubMed PubMed Central Google Scholar Jin, S. et al. Inference and analysis of cell–cell communication using CellChat. Nat. Commun. 12, 1088 (2021).Article CAS PubMed PubMed Central Google Scholar Cole, S., Eckstein, M., Friedland, S. & Życzkowski, K. On quantum optimal transport. Math. Phys. Anal. Geom. 26, 14 (2023).Article Google Scholar Lange, M. et al. Mapping lineage-traced cells across time points with moslin. Genome Biol. 25, 277 (2024).Article PubMed PubMed Central Google Scholar Forrow, A. & Schiebinger, G. LineageOT is a unified framework for lineage tracing and trajectory inference. Nat. Commun. 12, 4940 (2021).Article CAS PubMed PubMed Central Google Scholar Cang, Z. et al. Screening cell–cell communication in spatial transcriptomics via collective optimal transport. Nat. Methods 20, 218–228 (2023).Article CAS PubMed PubMed Central Google Scholar Cao, K., Gong, Q., Hong, Y. & Wan, L. A unified computational framework for single-cell data integration with optimal transport. Nat. Commun. 13, 7419 (2022).Article CAS PubMed PubMed Central Google Scholar Verdon, G. et al. Quantum graph neural networks. Preprint at https://doi.org/10.48550/arXiv.1909.12264 (2019).Biswas, B., Kumar, N., Sugimoto, M. & Hoque, M. A. scHD4E: Novel ensemble learning-based differential expression analysis method for single-cell RNA-sequencing data. Comput. Biol. Med. 178, 108769 (2024).Article CAS PubMed Google Scholar Mohammed, A. & Kora, R. A comprehensive review on ensemble deep learning: opportunities and challenges. J. King Saud. Univ. Comput. Inf. Sci. 35, 757–774 (2023).Article Google Scholar Poggiali, A., Berti, A., Bernasconi, A., Del Corso, G. M. & Guidotti, R. Quantum clustering with k-Means: a hybrid approach. Theor. Comput. Sci. 992, 114466 (2024).Article Google Scholar Roman-Vicharra, C. & Cai, J. J. Quantum gene regulatory networks. NPJ Quantum Inf. 9, 1–8 (2023).Article Google Scholar Loers, J. U. & Vermeirssen, V. A single-cell multimodal view on gene regulatory network inference from transcriptomics and chromatin accessibility data. Brief. Bioinform. 25, bbae382 (2024).Article CAS PubMed PubMed Central Google Scholar Krovi, H. Improved quantum algorithms for linear and nonlinear differential equations. Quantum 7, 913 (2023).Article Google Scholar Aubin-Frankowski, P.-C. & Vert, J.-P. Gene regulation inference from single-cell RNA-seq data with linear differential equations and velocity inference. Bioinformatics 36, 4774–4780 (2020).Article CAS PubMed Google Scholar Ghosh, A., Behl, H., Dupont, E., Torr, P. & Namboodiri, V. Steer: simple temporal regularization for neural ode. Adv. Neural Inf. Process. Syst. 33, 14831–14843 (2020).Google Scholar Sha, Y., Qiu, Y., Zhou, P. & Nie, Q. Reconstructing growth and dynamic trajectories from single-cell transcriptomics data. Nat. Mach. Intell. 6, 25–39 (2024).Article PubMed Google Scholar Song, T., Broadbent, C. & Kuang, R. GNTD: reconstructing spatial transcriptomes with graph-guided neural tensor decomposition informed by spatial and functional relations. Nat. Commun. 14, 8276 (2023).Article CAS PubMed PubMed Central Google Scholar Zinati, Y., Takiddeen, A. & Emad, A. GRouNdGAN: GRN-guided simulation of single-cell RNA-seq data using causal generative adversarial networks. Nat. Commun. 15, 4055 (2024).Article CAS PubMed PubMed Central Google Scholar Huang, Z., Wang, J., Lu, X., Mohd Zain, A. & Yu, G. scGGAN: single-cell RNA-seq imputation by graph-based generative adversarial network. Brief. Bioinforma. 24, bbad040 (2023).Article Google Scholar