Advancing single-cell omics and cell-based therapeutics with quantum computing

Wait 5 sec.

Method of the year 2013. Nat. Methods 11, 1 (2014).Marx, V. Method of the year: spatially resolved transcriptomics. Nat. Methods 18, 9–14 (2021).Article  CAS  PubMed  Google Scholar Method of the year 2024: spatial proteomics. Nat. Methods 21, 2195–2196 (2024).The Cancer Genome Atlas Research Network et al. The cancer genome atlas pan-cancer analysis project. Nat. Genet. 45, 1113–1120 (2013).Article  Google Scholar de Bruijn, I. et al. Sharing data from the Human Tumor Atlas Network through standards, infrastructure and community engagement. Nat. Methods 22, 664–671 (2025).Article  PubMed  PubMed Central  Google Scholar Jain, S. et al. Advances and prospects for the Human BioMolecular Atlas Program (HuBMAP). Nat. Cell Biol. 25, 1089–1100 (2023).Article  CAS  PubMed  PubMed Central  Google Scholar Rozenblatt-Rosen, O., Stubbington, M. J., Regev, A. & Teichmann, S. A. The Human Cell Atlas: from vision to reality. Nature 550, 451–453 (2017).Article  CAS  PubMed  Google Scholar Regev, A. et al. The human cell atlas. eLife 6, e27041 (2017).Article  PubMed  PubMed Central  Google Scholar Zhang, J. et al. Tahoe-100M: a giga-scale single-cell perturbation atlas for context-dependent gene function and cellular modeling. Preprint at bioRxiv https://doi.org/10.1101/2025.02.20.639398 (2025).Klughammer, J. et al. A multi-modal single-cell and spatial expression map of metastatic breast cancer biopsies across clinicopathological features. Nat. Med. 30, 3236–3249 (2024).Article  CAS  PubMed  PubMed Central  Google Scholar Mo, C. K. et al. Tumour evolution and microenvironment interactions in 2D and 3D space. Nature 634, 1178–1186 (2024).Article  CAS  PubMed  PubMed Central  Google Scholar Greenbaum, S. et al. A spatially resolved timeline of the human maternal–fetal interface. Nature 619, 595–605 (2023).Article  CAS  PubMed  PubMed Central  Google Scholar Ren, J. et al. Spatiotemporally resolved transcriptomics reveals the subcellular RNA kinetic landscape. Nat. Methods 20, 695–705 (2023).Article  CAS  PubMed  PubMed Central  Google Scholar Wagner, J. et al. A single-cell atlas of the tumor and immune ecosystem of human breast cancer. Cell 177, 1330–1345 (2019).Article  CAS  PubMed  PubMed Central  Google Scholar Paik, D. T., Cho, S., Tian, L., Chang, H. Y. & Wu, J. C. Single-cell RNA sequencing in cardiovascular development, disease and medicine. Nat. Rev. Cardiol. 17, 457–473 (2020).Article  CAS  PubMed  PubMed Central  Google Scholar Segerstolpe, Å et al. Single-cell transcriptome profiling of human pancreatic islets in health and type 2 diabetes. Cell Metab. 24, 593–607 (2016).Article  CAS  PubMed  PubMed Central  Google Scholar Li, H. et al. A comprehensive benchmarking with practical guidelines for cellular deconvolution of spatial transcriptomics. Nat. Commun. 14, 1548 (2023).Article  PubMed  PubMed Central  Google Scholar Dill, K. A. & MacCallum, J. L. The protein-folding problem, 50 years on. Science 338, 1042–1046 (2012).Article  CAS  PubMed  Google Scholar Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).Article  CAS  PubMed  PubMed Central  Google Scholar Humphreys, I. R. et al. Computed structures of core eukaryotic protein complexes. Science 374, eabm4805 (2021).Article  CAS  PubMed  PubMed Central  Google Scholar Bryant, P. et al. Predicting the structure of large protein complexes using AlphaFold and Monte Carlo tree search. Nat. Commun. 13, 6028 (2022).Article  CAS  PubMed  PubMed Central  Google Scholar Mazurenko, S., Prokop, Z. & Damborsky, J. Machine learning in enzyme engineering. ACS Catal. 10, 1210–1223 (2019).Article  Google Scholar Dauparas, J. et al. Robust deep learning–based protein sequence design using ProteinMPNN. Science 378, 49–56 (2022).Article  CAS  PubMed  PubMed Central  Google Scholar Zhou, J. & Troyanskaya, O. G. Predicting effects of noncoding variants with deep learning–based sequence model. Nat. Methods 12, 931–934 (2015).Article  CAS  PubMed  PubMed Central  Google Scholar Greenwald, N. F. et al. Whole-cell segmentation of tissue images with human-level performance using large-scale data annotation and deep learning. Nat. Biotechnol. 40, 555–565 (2022).Article  CAS  PubMed  Google Scholar Esteva, A. et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 542, 115–118 (2017).Article  CAS  PubMed  PubMed Central  Google Scholar Ardila, D. et al. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat. Med. 25, 954–961 (2019).Article  CAS  PubMed  Google Scholar Zeng, Z., Li, Y., Li, Y. & Luo, Y. Statistical and machine learning methods for spatially resolved transcriptomics data analysis. Genome Biol. 23, 83 (2022).Article  PubMed  PubMed Central  Google Scholar Kelly, C. J., Karthikesalingam, A., Suleyman, M., Corrado, G. & King, D. Key challenges for delivering clinical impact with artificial intelligence. BMC Med. 17, 1–9 (2019).Article  CAS  Google Scholar Greener, J. G., Kandathil, S. M., Moffat, L. & Jones, D. T. A guide to machine learning for biologists. Nat. Rev. Mol. Cell Biol. 23, 40–55 (2022).Article  CAS  PubMed  Google Scholar Biancalani, T. et al. Deep learning and alignment of spatially resolved single-cell transcriptomes with Tangram. Nat. Methods 18, 1352–1362 (2021).Article  PubMed  PubMed Central  Google Scholar Tung, P.-Y. et al. Batch effects and the effective design of single-cell gene expression studies. Sci. Rep. 7, 39921 (2017).Article  CAS  PubMed  PubMed Central  Google Scholar Saelens, W., Cannoodt, R., Todorov, H. & Saeys, Y. A comparison of single-cell trajectory inference methods. Nat. Biotechnol. 37, 547–554 (2019).Article  CAS  PubMed  Google Scholar Dirac, P. A. M. The Principles of Quantum Mechanics (Oxford Univ. Press, 1981).Heisenberg, W. in Physicist’s Conception of Nature (ed. Heisenberg, W.) (Harcourt, Brace & co., 1958).Levine, H. et al. Parallel implementation of high-fidelity multiqubit gates with neutral atoms. Phys. Rev. Lett. 123, 170503 (2019).Article  CAS  PubMed  Google Scholar Burkard, G., Ladd, T. D., Pan, A., Nichol, J. M. & Petta, J. R. Semiconductor spin qubits. Rev. Mod. Phys. 95, 025003 (2023).Article  CAS  Google Scholar Conlon, A., Pellegrino, D., Slingerland, J. K., Dooley, S. & Kells, G. Error generation and propagation in Majorana-based topological qubits. Phys. Rev. B 100, 134307 (2019).Article  CAS  Google Scholar Kozhanov, A. et al. Next-generation trapped-ion quantum computing system. In Optica Quantum 2.0 Conference and Exhibition QM3A-2 (Optical Publishing Group, 2023).Bravyi, S., Dial, O., Gambetta, J. M., Gil, D. & Nazario, Z. The future of quantum computing with superconducting qubits. J. Appl. Phys. 132, 160902 (2022).Article  CAS  Google Scholar Chamberland, C. et al. Building a fault-tolerant quantum computer using concatenated cat codes. PRX Quantum 3, 010329 (2022).Article  Google Scholar Martinis, J. M. Surface loss calculations and design of a superconducting transmon qubit with tapered wiring. npj Quantum Inf. 8, 26 (2022).Chow, J., Dial, O. & Gambetta, J. IBM quantum breaks the 100-qubit processor barrier. IBM Research Blog https://www.ibm.com/quantum/blog/127-qubit-quantum-processor-eagle (2022).Google Quantum, A. I. & Collaborators Quantum error correction below the surface code threshold. Nature 638, 920–926 (2025).Bravyi, S. et al. High-threshold and low-overhead fault-tolerant quantum memory. Nature 627, 778–782 (2024).Article  CAS  PubMed  PubMed Central  Google Scholar Cross, A. et al. OpenQASM 3: a broader and deeper quantum assembly language. ACM Trans. Quantum Comput. 3, 1–50 (2022).Article  Google Scholar Jurcevic, P. et al. Demonstration of quantum volume 64 on a superconducting quantum computing system. Quantum Sci. Technol. 6, 025020 (2021).Article  Google Scholar Piveteau, C. & Sutter, D. Circuit knitting with classical communication. IEEE Trans. Inf. Theor. 70, 2734–2745 (2024).Article  Google Scholar Patti, T. L., Shehab, O., Najafi, K. & Yelin, S. F. Markov chain Monte Carlo enhanced variational quantum algorithms. Quantum Sci. Technol. 8, 015019 (2022).Article  Google Scholar Van Den Berg, E., Minev, Z. K., Kandala, A. & Temme, K. Probabilistic error cancellation with sparse Pauli–Lindblad models on noisy quantum processors. Nat. Phys. 19, 1116–1121 (2023).Article  Google Scholar Kim, Y. et al. Scalable error mitigation for noisy quantum circuits produces competitive expectation values. Nat. Phys. 19, 752–759 (2023).Article  CAS  Google Scholar Caro, M. C. et al. Generalization in quantum machine learning from few training data. Nat. Commun. 13, 4919 (2022).Article  CAS  PubMed  PubMed Central  Google Scholar Cerezo, M., Verdon, G., Huang, H.-Y., Cincio, L. & Coles, P. J. Challenges and opportunities in quantum machine learning. Nat. Comput. Sci. 2, 567–576 (2022).Article  CAS  PubMed  Google Scholar Abbas, A. et al. Challenges and opportunities in quantum optimization. Nat. Rev. Phys. 6, 718–735 (2024).Article  Google Scholar Krunic, Z., Flöther, F. F., Seegan, G., Earnest-Noble, N. D. & Shehab, O. Quantum kernels for real-world predictions based on electronic health records. IEEE Trans. Quantum Eng. 3, 1–11 (2022).Article  Google Scholar Utro, F., Bose, A., Wang, R., Dubovitskii, V. & Parida, L. A perspective on quantum computing for analyzing cell-cell communication networks. In Conference on Intelligent Systems for Molecular Biology (ISMB, 2024).Doga, H. et al. How can quantum computing be applied in clinical trial design and optimization? Trends Pharmacol. Sci. 45, 880–891 (2024).Article  CAS  PubMed  Google Scholar Doga, H. et al. A perspective on protein structure prediction using quantum computers. J. Chem. Theory Comput. 20, 3359–3378 (2024).Article  CAS  PubMed  PubMed Central  Google Scholar Flöther, F. F. et al. How quantum computing can enhance biomarker discovery. Patterns 6, 101236 (2025).Article  PubMed  PubMed Central  Google Scholar Dubovitskii, V., Bose, A., Utro, F. & Pardia, L. On quantum random walks in biomolecular networks. Preprint at https://doi.org/10.48550/arXiv.2506.06514 (2025).Moses, L. & Pachter, L. Museum of spatial transcriptomics. Nat. Methods 19, 534–546 (2022).Article  CAS  PubMed  Google Scholar Wang, Z. Cell segmentation for image cytometry: advances, insufficiencies, and challenges. Cytom. A 95, 708–711 (2019).Article  Google Scholar Pang, M., Roy, T. K., Wu, X. & Tan, K. CelloType: a unified model for segmentation and classification of tissue images. Nat. Methods 22, 348–357 (2025).Article  CAS  PubMed  Google Scholar Petukhov, V. et al. Cell segmentation in imaging-based spatial transcriptomics. Nat. Biotechnol. 40, 345–354 (2022).Article  CAS  PubMed  Google Scholar Chen, H., Li, D. & Bar-Joseph, Z. SCS: cell segmentation for high-resolution spatial transcriptomics. Nat. Methods 20, 1237–1243 (2023).Article  CAS  PubMed  Google Scholar Moen, E. et al. Deep learning for cellular image analysis. Nat. Methods 16, 1233–1246 (2019).Article  CAS  PubMed  PubMed Central  Google Scholar Walker, B. L., Cang, Z., Ren, H., Bourgain-Chang, E. & Nie, Q. Deciphering tissue structure and function using spatial transcriptomics. Commun. Biol. 5, 220 (2022).Article  PubMed  PubMed Central  Google Scholar Nitzan, M., Karaiskos, N., Friedman, N. & Rajewsky, N. Gene expression cartography. Nature 576, 132–137 (2019).Article  CAS  PubMed  Google Scholar Pesah, A. et al. Absence of barren plateaus in quantum convolutional neural networks. Phys. Rev. X 11, 041011 (2021).CAS  Google Scholar Hur, T., Kim, L. & Park, D. K. Quantum convolutional neural network for classical data classification. Quantum Mach. Intell. 4, 3 (2022).Article  Google Scholar Born, J. et al. Quantum doubly stochastic transformers. Preprint at https://doi.org/10.48550/arXiv.2504.16275 (2025).Zhao, L., Wan, L. & Luo, M.-X. Quantum algorithm for Markov Random Fields structure learning by information theoretic properties. Phys. Scr. 100, 075121 (2025).Article  CAS  Google Scholar Khatri, N., Matos, G., Coopmans, L. & Clark, S. Quixer: a quantum transformer model. Preprint at https://doi.org/10.48550/arXiv.2406.04305 (2024).Cherrat, E. A. et al. Quantum vision transformers. Quantum 8, 1265 (2024).Article  Google Scholar Jayakody, M. N., Meena, C. & Pradhan, P. Revisiting one-dimensional discrete-time quantum walks with general coin. Phys. Open. 17, 100189 (2023).Article  Google Scholar Mariella, N. et al. Quantum theory and application of contextual optimal transport. In Proc. 41st International Conference on Machine Learning Article 1416, 34822–34845 (ACM, 2024).Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902 e21 (2019).Article  CAS  PubMed  PubMed Central  Google Scholar Palla, G. et al. Squidpy: a scalable framework for spatial omics analysis. Nat. Methods 19, 171–178 (2022).Article  CAS  PubMed  PubMed Central  Google Scholar Dries, R. et al. Giotto: a toolbox for integrative analysis and visualization of spatial expression data. Genome Biol. 22, 78 (2021).Article  CAS  PubMed  PubMed Central  Google Scholar Li, M. M., Huang, K. & Zitnik, M. Graph representation learning in biomedicine and healthcare. Nat. Biomed. Eng. 6, 1353–1369 (2022).Article  PubMed  PubMed Central  Google Scholar Jaume, G. et al. Quantifying explainers of graph neural networks in computational pathology. In Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition 8106–8116 (CVPR, 2021).Liu, T. et al. A comprehensive overview of graph neural network-based approaches to clustering for spatial transcriptomics. Comput. Struct. Biotechnol. J. 23, 106–128 (2024).Article  PubMed  Google Scholar Li, Y. & Luo, Y. STdGCN: spatial transcriptomic cell-type deconvolution using graph convolutional networks. Genome Biol. 25, 206 (2024).Article  CAS  PubMed  PubMed Central  Google Scholar Pati, P. et al. Hierarchical graph representations in digital pathology. Med. image Anal. 75, 102264 (2022).Article  PubMed  Google Scholar Cook, S. A. The complexity of theorem-proving procedures. Log. Autom. Comput. Complex. https://doi.org/10.1145/3588287.3588297 (1971).Article  Google Scholar Sun, S., Zhu, J. & Zhou, X. Statistical analysis of spatial expression patterns for spatially resolved transcriptomic studies. Nat. Methods 17, 193–200 (2020).Article  CAS  PubMed  PubMed Central  Google Scholar Govek, K. W., Yamajala, V. S. & Camara, P. G. Clustering-independent analysis of genomic data using spectral simplicial theory. PLoS Comput. Biol. 15, e1007509 (2019).Article  PubMed  PubMed Central  Google Scholar Miller, B. F., Bambah-Mukku, D., Dulac, C., Zhuang, X. & Fan, J. Characterizing spatial gene expression heterogeneity in spatially resolved single-cell transcriptomic data with nonuniform cellular densities. Genome Res. 31, 1843–1855 (2021).Article  CAS  PubMed  PubMed Central  Google Scholar Armingol, E., Officer, A., Harismendy, O. & Lewis, N. E. Deciphering cell-cell interactions and communication from gene expression. Nat. Rev. Genet. 22, 71–88 (2021).Article  CAS  PubMed  Google Scholar Arnol, D., Schapiro, D., Bodenmiller, B., Saez-Rodriguez, J. & Stegle, O. Modeling cell-cell interactions from spatial molecular data with spatial variance component analysis. Cell Rep. 29, 202–211 e6 (2019).Article  CAS  PubMed  PubMed Central  Google Scholar Tanevski, J., Flores, R. O. R., Gabor, A., Schapiro, D. & Saez-Rodriguez, J. Explainable multiview framework for dissecting spatial relationships from highly multiplexed data. Genome Biol. 23, 97 (2022).Article  PubMed  PubMed Central  Google Scholar Sahin, M. E. et al. Efficient parameter optimisation for quantum kernel alignment: a sub-sampling approach in variational training. Quantum 8, 1502 (2024).Article  Google Scholar Ray, A. et al. Hybrid quantum–classical graph neural networks for tumor classification in digital pathology. 2024 IEEE Int. Conf. Quantum Comput. Eng. 01, 1611–1616 (2024).Article  Google Scholar Mirzasoleiman, B., Bilmes, J. & Leskovec, J. Coresets for data-efficient training of machine learning models. In Proc. 37th International Conference on Machine Learning Vol. 119, 569–579 (PMLR, 2020).Layden, D. et al. Quantum-enhanced Markov chain Monte Carlo. Nature 619, 282–287 (2023).Article  CAS  PubMed  Google Scholar Macaluso, A., Clissa, L., Lodi, S. & Sartori, C. An efficient quantum algorithm for ensemble classification using bagging. IET Quantum Commun. 5, 253–268 (2024).Article  Google Scholar Rhrissorrakrai, K. et al. Quantum ensembling methods for healthcare and life science. Preprint at https://doi.org/10.48550/arXiv.2506.02213 (2025).Wang, Y., Wang, X., Qi, B. & Dong, D. Supervised-learning guarantee for quantum AdaBoost. Phys. Rev. Appl. 22, 054001 (2024).Article  CAS  Google Scholar Berry, D. W. et al. Analyzing prospects for quantum advantage in topological data analysis. PRX Quantum 5, 010319 (2024).Article  Google Scholar Hayakawa, R. Quantum algorithm for persistent Betti numbers and topological data analysis. Quantum 6, 873 (2022).Article  Google Scholar Lloyd, S., Garnerone, S. & Zanardi, P. Quantum algorithms for topological and geometric analysis of data. Nat. Commun. 7, 10138 (2016).Article  CAS  PubMed  PubMed Central  Google Scholar Ding, J., Sharon, N. & Bar-Joseph, Z. Temporal modelling using single-cell transcriptomics. Nat. Rev. Genet. 23, 355–368 (2022).Article  CAS  PubMed  PubMed Central  Google Scholar La Manno, G. et al. RNA velocity of single cells. Nature 560, 494–498 (2018).Article  PubMed  PubMed Central  Google Scholar Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386 (2014).Article  CAS  PubMed  PubMed Central  Google Scholar Bergen, V., Lange, M., Peidli, S., Wolf, F. A. & Theis, F. J. Generalizing RNA velocity to transient cell states through dynamical modeling. Nat. Biotechnol. 38, 1408–1414 (2020).Article  CAS  PubMed  Google Scholar Teschendorff, A. E. & Enver, T. Single-cell entropy for accurate estimation of differentiation potency from a cell’s transcriptome. Nat. Commun. 8, 15599 (2017).Article  CAS  PubMed  PubMed Central  Google Scholar Wolf, F. A. et al. PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome Biol. 20, 1–9 (2019).Article  Google Scholar Ji, Z. & Ji, H. TSCAN: pseudo-time reconstruction and evaluation in single-cell RNA-seq analysis. Nucleic Acids Res. 44, e117 (2016).Article  PubMed  PubMed Central  Google Scholar Cao, J. et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature 566, 496–502 (2019).Article  CAS  PubMed  PubMed Central  Google Scholar Schiebinger, G. et al. Optimal-transport analysis of single-cell gene expression identifies developmental trajectories in reprogramming. Cell 176, 1517 (2019).Article  CAS  PubMed  PubMed Central  Google Scholar Tong, A., Huang, J., Wolf, G., van Dijk, D. & Krishnaswamy, S. TrajectoryNet: a dynamic optimal transport network for modeling cellular dynamics. Proc. Mach. Learn. Res. 119, 9526–9536 (2020).PubMed  PubMed Central  Google Scholar Chen, R. T., Rubanova, Y., Bettencourt, J. & Duvenaud, D. K. Neural ordinary differential equations. In Proc. 32nd International Conference on Neural Information Processing System 6572–6583 (ACM, 2018).Pham, D. et al. Robust mapping of spatiotemporal trajectories and cell-cell interactions in healthy and diseased tissues. Nat. Commun. 14, 7739 (2023).Article  CAS  PubMed  PubMed Central  Google Scholar Ji, Y., Lotfollahi, M., Wolf, F. A. & Theis, F. J. Machine learning for perturbational single-cell omics. Cell Syst. 12, 522–537 (2021).Article  CAS  PubMed  Google Scholar Zhang, J., Larschan, E., Bigness, J. & Singh, R. scNODE: generative model for temporal single cell transcriptomic data prediction. Bioinformatics 40, ii146–ii154 (2024).Article  PubMed  PubMed Central  Google Scholar Lin, C. & Bar-Joseph, Z. Continuous-state HMMs for modeling time-series single-cell RNA-seq data. Bioinformatics 35, 4707–4715 (2019).Article  CAS  PubMed  PubMed Central  Google Scholar Niraula, D., El Naqa, I., Tuszynski, J. A. & Gatenby, R. A. Modeling non-genetic information dynamics in cells using reservoir computing. iScience 27, 109614 (2024).Article  CAS  PubMed  PubMed Central  Google Scholar Hadaeghi, F. et al. Spatio-temporal feature learning with reservoir computing for T-cell segmentation in live-cell Ca2+ fluorescence microscopy. Sci. Rep. 11, 8233 (2021).Article  CAS  PubMed  PubMed Central  Google Scholar Lotfollahi, M., Wolf, F. A. & Theis, F. J. scGen predicts single-cell perturbation responses. Nat. Methods 16, 715–721 (2019).Article  CAS  PubMed  Google Scholar Rood, J. E., Hupalowska, A. & Regev, A. Toward a foundation model of causal cell and tissue biology with a perturbation cell and tissue atlas. Cell 187, 4520–4545 (2024).Article  CAS  PubMed  Google Scholar Jaitin, D. A. et al. Dissecting immune circuits by linking CRISPR-pooled screens with single-cell RNA-Seq. Cell 167, 1883–1896 e15 (2016).Article  CAS  PubMed  Google Scholar McFarland, J. M. et al. Multiplexed single-cell transcriptional response profiling to define cancer vulnerabilities and therapeutic mechanism of action. Nat. Commun. 11, 4296 (2020).Article  CAS  PubMed  PubMed Central  Google Scholar Frangieh, C. J. et al. Multimodal pooled Perturb-CITE-seq screens in patient models define mechanisms of cancer immune evasion. Nat. Genet. 53, 332–341 (2021).Article  CAS  PubMed  PubMed Central  Google Scholar Xie, S., Duan, J., Li, B., Zhou, P. & Hon, G. C. Multiplexed engineering and analysis of combinatorial enhancer activity in single cells. Mol. Cell 66, 285–299 e5 (2017).Article  CAS  PubMed  Google Scholar Gavriilidis, G. I., Vasileiou, V., Orfanou, A., Ishaque, N. & Psomopoulos, F. A mini-review on perturbation modelling across single-cell omic modalities. Comput. Struct. Biotechnol. J. 23, 1886–1896 (2024).Article  CAS  PubMed  PubMed Central  Google Scholar Nicol, P. B. et al. Robust identification of perturbed cell types in single-cell RNA-seq data. Nat. Commun. 15, 7610 (2024).Article  CAS  PubMed  PubMed Central  Google Scholar Dann, E., Henderson, N. C., Teichmann, S. A., Morgan, M. D. & Marioni, J. C. Differential abundance testing on single-cell data using k-nearest neighbor graphs. Nat. Biotechnol. 40, 245–253 (2022).Article  CAS  PubMed  Google Scholar Kamimoto, K. et al. Dissecting cell identity via network inference and in silico gene perturbation. Nature 614, 742–751 (2023).Article  CAS  PubMed  PubMed Central  Google Scholar Marouf, M. et al. Realistic in silico generation and augmentation of single-cell RNA-seq data using generative adversarial networks. Nat. Commun. 11, 166 (2020).Article  CAS  PubMed  PubMed Central  Google Scholar Kingma, D. P. Auto-encoding variational bayes. Preprint at https://doi.org/10.48550/arXiv.1312.6114 (2013).Szałata, A. et al. Transformers in single-cell omics: a review and new perspectives. Nat. Methods 21, 1430–1443 (2024).Article  PubMed  Google Scholar Bunne, C. et al. Learning single-cell perturbation responses using neural optimal transport. Nat. Methods 20, 1759–1768 (2023).Article  CAS  PubMed  PubMed Central  Google Scholar Bunne, C., Schiebinger, G., Krause, A., Regev, A. & Cuturi, M. Optimal transport for single-cell and spatial omics. Nat. Rev. Methods Prim. 4, 58 (2024).Article  CAS  Google Scholar Cui, H. et al. scGPT: toward building a foundation model for single-cell multi-omics using generative AI. Nat. Methods 21, 1470–1480 (2024).Article  CAS  PubMed  Google Scholar Fu, X. et al. A foundation model of transcription across human cell types. Nature 637, 965–973 (2025).Article  CAS  PubMed  PubMed Central  Google Scholar Hao, M. et al. Large-scale foundation model on single-cell transcriptomics. Nat. Methods 16, 4679 (2024).Google Scholar Heimberg, G. et al. A cell atlas foundation model for scalable search of similar human cells. Nature 638, 1085–1094 (2024).Article  PubMed  PubMed Central  Google Scholar Ghazanfar, S. et al. Investigating higher-order interactions in single-cell data with scHOT. Nat. Methods 17, 799–806 (2020).Article  CAS  PubMed  PubMed Central  Google Scholar Piatkowski, N. & Zoufal, C. Quantum circuits for discrete graphical models. Quantum Mach. Intell. 6, 37 (2024).Article  Google Scholar Ghosh, S., Opala, A., Matuszewski, M., Paterek, T. & Liew, T. C. Quantum reservoir processing. NPJ Quantum Inf. 5, 35 (2019).Article  Google Scholar Lukoševičius, M. A practical guide to applying echo state networks. Neural Netw. https://doi.org/10.1007/978-3-642-35289-8_36 (2012).Article  Google Scholar Tanaka, G. et al. Recent advances in physical reservoir computing: a review. Neural Netw. 115, 100–123 (2019).Article  PubMed  Google Scholar Zhu, C., Ehlers, P. J., Nurdin, H. I. & Soh, D. Practical few-atom quantum reservoir computing. Phys. Rev. Research 7, 023290 (2025).Article  CAS  Google Scholar Situ, H., He, Z., Wang, Y., Li, L. & Zheng, S. Quantum generative adversarial network for generating discrete distribution. Inf. Sci. 538, 193–208 (2020).Article  Google Scholar Zoufal, C., Lucchi, A. & Woerner, S. Quantum generative adversarial networks for learning and loading random distributions. NPJ Quantum Inf. 5, 103 (2019).Article  Google Scholar Kao, P.-Y. et al. Exploring the advantages of quantum generative adversarial networks in generative chemistry. J. Chem. Inf. Model. 63, 3307–3318 (2023).Article  CAS  PubMed  PubMed Central  Google Scholar Wan, K. H., Dahlsten, O., Kristjánsson, H., Gardner, R. & Kim, M. Quantum generalisation of feedforward neural networks. NPJ Quantum Inf. 3, 36 (2017).Article  Google Scholar Romero, J., Olson, J. P. & Aspuru-Guzik, A. Quantum autoencoders for efficient compression of quantum data. Quantum Sci. Technol. 2, 045001 (2017).Article  Google Scholar Khoshaman, A. et al. Quantum variational autoencoder. Quantum Sci. Technol. 4, 014001 (2018).Article  Google Scholar Erbe, R., Stein-O’Brien, G. & Fertig, E. J. Transcriptomic forecasting with neural ordinary differential equations. Patterns 4, 100793 (2023).Article  CAS  PubMed  PubMed Central  Google Scholar Choi, M., Flam-Shepherd, D., Kyaw, T. H. & Aspuru-Guzik, A. Learning quantum dynamics with latent neural ordinary differential equations. Phys. Rev. A 105, 042403 (2022).Article  CAS  Google Scholar Stassen, S. V., Yip, G. G. K., Wong, K. K. Y., Ho, J. W. K. & Tsia, K. K. Generalized and scalable trajectory inference in single-cell omics data with VIA. Nat. Commun. 12, 5528 (2021).Article  CAS  PubMed  PubMed Central  Google Scholar Albrecht, B. et al. Quantum feature maps for graph machine learning on a neutral atom quantum processor. Phys. Rev. A 107, 042615 (2023).Article  CAS  Google Scholar Baysoy, A., Bai, Z., Satija, R. & Fan, R. The technological landscape and applications of single-cell multi-omics. Nat. Rev. Mol. Cell Biol. 24, 695–713 (2023).Article  CAS  PubMed  Google Scholar Cao, K., Bai, X., Hong, Y. & Wan, L. Unsupervised topological alignment for single-cell multi-omics integration. Bioinformatics 36, i48–i56 (2020).Article  CAS  PubMed  PubMed Central  Google Scholar Wang, R. H., Wang, J. & Li, S. C. Probabilistic tensor decomposition extracts better latent embeddings from single-cell multiomic data. Nucleic Acids Res. 51, e81 (2023).Article  CAS  PubMed  PubMed Central  Google Scholar Cao, Z. J. & Gao, G. Multi-omics single-cell data integration and regulatory inference with graph-linked embedding. Nat. Biotechnol. 40, 1458–1466 (2022).Article  CAS  PubMed  PubMed Central  Google Scholar Kartha, V. K. et al. Functional inference of gene regulation using single-cell multi-omics. Cell Genom. 2, 100166 (2022).Article  CAS  PubMed  PubMed Central  Google Scholar Szklarczyk, D. et al. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47, D607–D613 (2019).Article  CAS  PubMed  Google Scholar Ma, A. et al. Single-cell biological network inference using a heterogeneous graph transformer. Nat. Commun. 14, 964 (2023).Article  CAS  PubMed  PubMed Central  Google Scholar Barabasi, A. L., Gulbahce, N. & Loscalzo, J. Network medicine: a network-based approach to human disease. Nat. Rev. Genet. 12, 56–68 (2011).Article  CAS  PubMed  PubMed Central  Google Scholar Luck, K. et al. A reference map of the human binary protein interactome. Nature 580, 402–408 (2020).Article  CAS  PubMed  PubMed Central  Google Scholar Maniscalco, S. et al. Quantum network medicine: rethinking medicine with network science and quantum algorithms. Preprint at https://doi.org/10.48550/arXiv.2206.12405 (2022).Saarinen, H., Goldsmith, M., Wang, R.-S., Loscalzo, J. & Maniscalco, S. Disease gene prioritization with quantum walks. Bioinformatics 40, btae513 (2024).Article  CAS  PubMed  PubMed Central  Google Scholar Bose, A., Platt, D. E., Haiminen, N. & Parida, L. CuNA: cumulant-based network analysis of genotype-phenotype associations in Parkinson’s disease. Preprint at medRxiv https://doi.org/10.1101/2021.08.02.21261457 (2021).Parida, L. & Ramakrishnan, N. Redescription mining: structure theory and algorithms. In Proc. 20th National Conference on Artificial Intelligence Vol. 2 (ACM, 2005).Bose, A. & Parida, L. Generating cumulant-based risk scores for diseases. US Patent Application No. 202403954 (2023).Gurnari, D. et al. Probing omics data via harmonic persistent homology. Sci. Rep. 15, 38836 (2025).Article  PubMed  PubMed Central  Google Scholar Percus, J. K. Correlation inequalities for Ising spin lattices. Commun. Math. Phys. 40, 283–308 (1975).Article  Google Scholar Platt, D. E., Basu, S., Zalloua, P. A. & Parida, L. Characterizing redescriptions using persistent homology to isolate genetic pathways contributing to pathogenesis. BMC Syst. Biol. 10, S10 (2016).Article  Google Scholar Gyurik, C., Cade, C. & Dunjko, V. Towards quantum advantage via topological data analysis. Quantum 6, 855 (2022).Article  Google Scholar Cui, L., Guo, G., Ng, M. K., Zou, Q. & Qiu, Y. GSTRPCA: irregular tensor singular value decomposition for single-cell multi-omics data clustering. Brief. Bioinform. 26, bbae649 (2024).Article  PubMed  PubMed Central  Google Scholar Hastings, M. B. Classical and quantum algorithms for tensor principal component analysis. Quantum 4, 237 (2020).Article  Google Scholar Burch, M. et al. Towards quantum tensor decomposition in biomedical applications. Preprint at https://doi.org/10.48550/arXiv.2502.13140 (2025).Zhou, L., Basso, J. & Mei, S. Statistical estimation in the spiked tensor model via the quantum approximate optimization algorithm. Adv. Neural Inf. Process. Syst. 37, 28537–28588 (2024).Google Scholar Zhu, X., Meng, S., Li, G., Wang, J. & Peng, X. AGImpute: imputation of scRNA-seq data based on a hybrid GAN with dropouts identification. Bioinformatics 40, btae068 (2024).Article  CAS  PubMed  PubMed Central  Google Scholar Xu, Y. et al. scIGANs: single-cell RNA-seq imputation using generative adversarial networks. Nucleic Acids Res. 48, e85 (2020).Article  CAS  PubMed  PubMed Central  Google Scholar Zeng, J., Wu, Y., Liu, J.-G., Wang, L. & Hu, J. Learning and inference on generative adversarial quantum circuits. Phys. Rev. A 99, 052306 (2019).Article  CAS  Google Scholar Li, J., Topaloglu, R. O. & Ghosh, S. Quantum generative models for small molecule drug discovery. IEEE Trans. Quantum Eng. 2, 1–8 (2021).Article  Google Scholar Huang, H.-L. et al. Experimental quantum generative adversarial networks for image generation. Phys. Rev. Appl. 16, 024051 (2021).Article  CAS  Google Scholar Abbas, A. et al. The power of quantum neural networks. Nat. Comput. Sci. 1, 403–409 (2021).Article  PubMed  Google Scholar Peters, R. et al. Quantum Convolutional HLA Immunogenic Peptide Prediction (Q-CHIPP): next-generation neoantigen prediction with quantum neural networks. Preprint at bioRxiv https://doi.org/10.1101/2025.07.29.667313 (2025).Shende, V. V., Bullock, S. S. & Markov, I. L. Synthesis of quantum-logic circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 25, 1000–1010 (2006).Article  Google Scholar Plesch, M. & Brukner, Č Quantum-state preparation with universal gate decompositions. Phys. Rev. A 83, 032302 (2011).Article  Google Scholar Zhang, X.-M., Li, T. & Yuan, X. Quantum state preparation with optimal circuit depth: implementations and applications. Phys. Rev. Lett. 129, 230504 (2022).Article  CAS  PubMed  Google Scholar Basu, S. et al. Towards quantum-enabled cell-centric therapeutics. Preprint at https://doi.org/10.48550/arXiv.2307.05734 (2023).Moffat, J. G., Vincent, F., Lee, J. A., Eder, J. & Prunotto, M. Opportunities and challenges in phenotypic drug discovery: an industry perspective. Nat. Rev. Drug. Discov. 16, 531–543 (2017).Article  CAS  PubMed  Google Scholar Lin, A. et al. Off-target toxicity is a common mechanism of action of cancer drugs undergoing clinical trials. Sci. Transl. Med. 11, eaaw8412 (2019).Article  CAS  PubMed  PubMed Central  Google Scholar Sams-Dodd, F. Target-based drug discovery: is something wrong? Drug. Discov. today 10, 139–147 (2005).Article  CAS  PubMed  Google Scholar Huang, H.-Y. et al. Power of data in quantum machine learning. Nat. Commun. 12, 2631 (2021).Article  CAS  PubMed  PubMed Central  Google Scholar Utro, F. et al. Enhanced prediction of CAR T-Cell cytotoxicity with quantum-kernel methods. Preprint at https://doi.org/10.48550/arXiv.2507.22710 (2025).Gambetta, J. Expanding the IBM Quantum roadmap to anticipate the future of quantum-centric supercomputing. IBM Research Blog https://www.ibm.com/quantum/blog/ibm-quantum-roadmap-2025 (2022).AbuGhanem, M. IBM quantum computers: evolution, performance, and future directions. J. Supercomput. 81, 687 (2025).Article  Google Scholar Yoder, T. J. et al. Tour de gross: a modular quantum computer based on bivariate bicycle codes. Preprint at https://doi.org/10.48550/arXiv.2506.03094 (2025).Müller, T. et al. Improved belief propagation is sufficient for real-time decoding of quantum memory. Preprint at https://doi.org/10.48550/arXiv.2506.01779 (2025).Mohseni, M. et al. How to build a quantum supercomputer: scaling challenges and opportunities. Preprint at https://doi.org/10.48550/arXiv.2411.10406 (2024).Robledo-Moreno, J. et al. Chemistry beyond the scale of exact diagonalization on a quantum-centric supercomputer. Sci. Adv. 11, eadu9991 (2025).Article  CAS  PubMed  Google Scholar Ding, Q.-M., Huang, Y.-M. & Yuan, X. Molecular docking via quantum approximate optimization algorithm. Phys. Rev. Appl. 21, 034036 (2024).Article  CAS  Google Scholar Chandarana, P., Hegade, N. N., Montalban, I., Solano, E. & Chen, X. Digitized counterdiabatic quantum algorithm for protein folding. Phys. Rev. Appl. 20, 014024 (2023).Article  CAS  Google Scholar Lacroix, N. et al. Improving the performance of deep quantum optimization algorithms with continuous gate sets. PRX Quantum 1, 020304 (2020).Article  Google Scholar Bose, A., Doga, H., Utro, F. & Parida, L. Quantum-enabled multi-omics analysis. In Conference on Intelligent Systems for Molecular Biology (2024).Ghazi Vakili, M. et al. Quantum-computing-enhanced algorithm unveils potential KRAS inhibitors. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02526-3 (2025).Article  PubMed  Google Scholar Larocca, M. et al. Barren plateaus in variational quantum computing. Nat. Rev. Phys. 7, 174–189 (2025).Article  Google Scholar Du, Y., Hsieh, M.-H., Liu, T. & Tao, D. Expressive power of parametrized quantum circuits. Phys. Rev. Res. 2, 033125 (2020).Article  CAS  Google Scholar Arrazola, J. M., Delgado, A., Bardhan, B. R. & Lloyd, S. Quantum-inspired algorithms in practice. Quantum 4, 307 (2020).Article  Google Scholar Tang, E. Dequantizing algorithms to understand quantum advantage in machine learning. Nat. Rev. Phys. 4, 692–693 (2022).Article  Google Scholar Chia, N.-H. et al. Sampling-based sublinear low-rank matrix arithmetic framework for dequantizing quantum machine learning. J. ACM 69, 33:1–33:72 (2022).Article  Google Scholar Koch, T. et al. Quantum optimization benchmark library – the intractable decathlon. Preprint at https://doi.org/10.48550/arXiv.2504.03832 (2025).Amitay, Y. et al. CellSighter: a neural network to classify cells in highly multiplexed images. Nat. Commun. 14, 4302 (2023).Article  CAS  PubMed  PubMed Central  Google Scholar Angermueller, C., Lee, H. J., Reik, W. & Stegle, O. DeepCpG: accurate prediction of single-cell DNA methylation states using deep learning. Genome Biol. 18, 67 (2017).Article  PubMed  PubMed Central  Google Scholar Sidhom, J.-W., Larman, H. B., Pardoll, D. M. & Baras, A. S. DeepTCR is a deep learning framework for revealing sequence concepts within T-cell repertoires. Nat. Commun. 12, 1605 (2021).Article  CAS  PubMed  PubMed Central  Google Scholar Yu, Z., Liu, F. & Li, Y. scTCA: a hybrid Transformer-CNN architecture for imputation and denoising of scDNA-seq data. Brief. Bioinform. https://doi.org/10.1093/bib/bbae577 (2024).Article  PubMed  PubMed Central  Google Scholar De Waele, G., Clauwaert, J., Menschaert, G. & Waegeman, W. CpG transformer for imputation of single-cell methylomes. Bioinformatics 38, 597–603 (2022).Article  PubMed  Google Scholar Zhou, J. et al. Robust single-cell Hi-C clustering by convolution-and random-walk-based imputation. Proc. Natl Acad. Sci. USA 116, 14011–14018 (2019).Article  CAS  PubMed  PubMed Central  Google Scholar Jin, S. et al. Inference and analysis of cell–cell communication using CellChat. Nat. Commun. 12, 1088 (2021).Article  CAS  PubMed  PubMed Central  Google Scholar Cole, S., Eckstein, M., Friedland, S. & Życzkowski, K. On quantum optimal transport. Math. Phys. Anal. Geom. 26, 14 (2023).Article  Google Scholar Lange, M. et al. Mapping lineage-traced cells across time points with moslin. Genome Biol. 25, 277 (2024).Article  PubMed  PubMed Central  Google Scholar Forrow, A. & Schiebinger, G. LineageOT is a unified framework for lineage tracing and trajectory inference. Nat. Commun. 12, 4940 (2021).Article  CAS  PubMed  PubMed Central  Google Scholar Cang, Z. et al. Screening cell–cell communication in spatial transcriptomics via collective optimal transport. Nat. Methods 20, 218–228 (2023).Article  CAS  PubMed  PubMed Central  Google Scholar Cao, K., Gong, Q., Hong, Y. & Wan, L. A unified computational framework for single-cell data integration with optimal transport. Nat. Commun. 13, 7419 (2022).Article  CAS  PubMed  PubMed Central  Google Scholar Verdon, G. et al. Quantum graph neural networks. Preprint at https://doi.org/10.48550/arXiv.1909.12264 (2019).Biswas, B., Kumar, N., Sugimoto, M. & Hoque, M. A. scHD4E: Novel ensemble learning-based differential expression analysis method for single-cell RNA-sequencing data. Comput. Biol. Med. 178, 108769 (2024).Article  CAS  PubMed  Google Scholar Mohammed, A. & Kora, R. A comprehensive review on ensemble deep learning: opportunities and challenges. J. King Saud. Univ. Comput. Inf. Sci. 35, 757–774 (2023).Article  Google Scholar Poggiali, A., Berti, A., Bernasconi, A., Del Corso, G. M. & Guidotti, R. Quantum clustering with k-Means: a hybrid approach. Theor. Comput. Sci. 992, 114466 (2024).Article  Google Scholar Roman-Vicharra, C. & Cai, J. J. Quantum gene regulatory networks. NPJ Quantum Inf. 9, 1–8 (2023).Article  Google Scholar Loers, J. U. & Vermeirssen, V. A single-cell multimodal view on gene regulatory network inference from transcriptomics and chromatin accessibility data. Brief. Bioinform. 25, bbae382 (2024).Article  CAS  PubMed  PubMed Central  Google Scholar Krovi, H. Improved quantum algorithms for linear and nonlinear differential equations. Quantum 7, 913 (2023).Article  Google Scholar Aubin-Frankowski, P.-C. & Vert, J.-P. Gene regulation inference from single-cell RNA-seq data with linear differential equations and velocity inference. Bioinformatics 36, 4774–4780 (2020).Article  CAS  PubMed  Google Scholar Ghosh, A., Behl, H., Dupont, E., Torr, P. & Namboodiri, V. Steer: simple temporal regularization for neural ode. Adv. Neural Inf. Process. Syst. 33, 14831–14843 (2020).Google Scholar Sha, Y., Qiu, Y., Zhou, P. & Nie, Q. Reconstructing growth and dynamic trajectories from single-cell transcriptomics data. Nat. Mach. Intell. 6, 25–39 (2024).Article  PubMed  Google Scholar Song, T., Broadbent, C. & Kuang, R. GNTD: reconstructing spatial transcriptomes with graph-guided neural tensor decomposition informed by spatial and functional relations. Nat. Commun. 14, 8276 (2023).Article  CAS  PubMed  PubMed Central  Google Scholar Zinati, Y., Takiddeen, A. & Emad, A. GRouNdGAN: GRN-guided simulation of single-cell RNA-seq data using causal generative adversarial networks. Nat. Commun. 15, 4055 (2024).Article  CAS  PubMed  PubMed Central  Google Scholar Huang, Z., Wang, J., Lu, X., Mohd Zain, A. & Yu, G. scGGAN: single-cell RNA-seq imputation by graph-based generative adversarial network. Brief. Bioinforma. 24, bbad040 (2023).Article  Google Scholar