ENCODE Project Consortium. Expanded encyclopaedias of DNA elements in the human and mouse genomes. Nature 583, 699–710 (2020).Article Google Scholar Allis, C. D. & Jenuwein, T. The molecular hallmarks of epigenetic control. Nat. Rev. Genet. 17, 487–500 (2016).Article CAS PubMed Google Scholar Klose, R. J. & Bird, A. P. Genomic DNA methylation: the mark and its mediators. Trends Biochem. Sci. 31, 89–97 (2006).Article CAS PubMed Google Scholar Bird, A. DNA methylation patterns and epigenetic memory. Genes Dev. 16, 6–21 (2002).Article CAS PubMed Google Scholar Bird, A. P. DNA methylation and the frequency of CpG in animal DNA. Nucleic Acids Res. 8, 1499–1504 (1980).Article CAS PubMed PubMed Central Google Scholar Ponger, L., Duret, L. & Mouchiroud, D. Determinants of CpG islands: expression in early embryo and isochore structure. Genome Res. 11, 1854–1860 (2001).Article CAS PubMed PubMed Central Google Scholar Angeloni, A. & Bogdanovic, O. Sequence determinants, function, and evolution of CpG islands. Biochem. Soc. Trans. 49, 1109–1119 (2021).Article CAS PubMed PubMed Central Google Scholar Isbel, L., Grand, R. S. & Schubeler, D. Generating specificity in genome regulation through transcription factor sensitivity to chromatin. Nat. Rev. Genet. 23, 728–740 (2022).Article CAS PubMed Google Scholar Domcke, S. et al. Competition between DNA methylation and transcription factors determines binding of NRF1. Nature 528, 575–579 (2015).Article CAS PubMed Google Scholar Yin, Y. et al. Impact of cytosine methylation on DNA binding specificities of human transcription factors. Science 356, eaaj2239 (2017).Article PubMed PubMed Central Google Scholar Weber, M. et al. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat. Genet. 37, 853–862 (2005).Article CAS PubMed Google Scholar Movassagh, M. et al. Distinct epigenomic features in end-stage failing human hearts. Circulation 124, 2411–2422 (2011).Article PubMed PubMed Central Google Scholar Movassagh, M. et al. Differential DNA methylation correlates with differential expression of angiogenic factors in human heart failure. PLoS ONE 5, e8564 (2010).Article PubMed PubMed Central Google Scholar Kranzhofer, D. K. et al. 5′-Hydroxymethylcytosine precedes loss of CpG methylation in enhancers and genes undergoing activation in cardiomyocyte maturation. PLoS ONE 11, e0166575 (2016).Article PubMed PubMed Central Google Scholar Greco, C. M. et al. DNA hydroxymethylation controls cardiomyocyte gene expression in development and hypertrophy. Nat. Commun. 7, 12418 (2016).Article CAS PubMed PubMed Central Google Scholar Laird, P. W. Principles and challenges of genomewide DNA methylation analysis. Nat. Rev. Genet. 11, 191–203 (2010).Article CAS PubMed Google Scholar Lister, R. et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462, 315–322 (2009).Article CAS PubMed PubMed Central Google Scholar Morrison, J. et al. Evaluation of whole-genome DNA methylation sequencing library preparation protocols. Epigenetics Chromatin 14, 28 (2021).Article CAS PubMed PubMed Central Google Scholar Pidsley, R. et al. Critical evaluation of the Illumina MethylationEPIC BeadChip microarray for whole-genome DNA methylation profiling. Genome Biol. 17, 208 (2016).Article PubMed PubMed Central Google Scholar Hon, G. C. et al. Epigenetic memory at embryonic enhancers identified in DNA methylation maps from adult mouse tissues. Nat. Genet. 45, 1198–1206 (2013).Article CAS PubMed PubMed Central Google Scholar He, Y. et al. Spatiotemporal DNA methylome dynamics of the developing mouse fetus. Nature 583, 752–759 (2020).Article CAS PubMed PubMed Central Google Scholar Gilsbach, R. et al. Distinct epigenetic programs regulate cardiac myocyte development and disease in the human heart in vivo. Nat. Commun. 9, 391 (2018).Article PubMed PubMed Central Google Scholar Gunthel, M., Barnett, P. & Christoffels, V. M. Development, proliferation, and growth of the mammalian heart. Mol. Ther. 26, 1599–1609 (2018).Article CAS PubMed PubMed Central Google Scholar Ivey, M. J. et al. Resident fibroblast expansion during cardiac growth and remodeling. J. Mol. Cell Cardiol. 114, 161–174 (2018).Article CAS PubMed Google Scholar Meder, B. et al. Epigenome-Wide Association Study identifies cardiac gene patterning and a novel class of biomarkers for heart failure. Circulation 136, 1528–1544 (2017).Article CAS PubMed Google Scholar Haas, J. et al. Alterations in cardiac DNA methylation in human dilated cardiomyopathy. EMBO Mol. Med. 5, 413–429 (2013).Article CAS PubMed PubMed Central Google Scholar Pepin, M. E. et al. Racial and socioeconomic disparity associates with differences in cardiac DNA methylation among men with end-stage heart failure. Am. J. Physiol. Heart Circ. Physiol. 320, H2066–H2079 (2021).Article CAS PubMed PubMed Central Google Scholar Pepin, M. E. et al. DNA methylation reprograms cardiac metabolic gene expression in end-stage human heart failure. Am. J. Physiol. Heart Circ. Physiol. 317, H674–H684 (2019).Article CAS PubMed PubMed Central Google Scholar Chapski, D. J. et al. Early adaptive chromatin remodeling events precede pathologic phenotypes and are reinforced in the failing heart. J. Mol. Cell. Cardiol. 160, 73–86 (2021).Article CAS PubMed PubMed Central Google Scholar Chen, H. et al. DNA methylation indicates susceptibility to isoproterenol-induced cardiac pathology and is associated with chromatin states. Circ. Res. 118, 786–797 (2016).Article CAS PubMed PubMed Central Google Scholar Oeing, C. U. et al. Indirect epigenetic testing identifies a diagnostic signature of cardiomyocyte DNA methylation in heart failure. Basic Res. Cardiol. 118, 9 (2023).Article CAS PubMed PubMed Central Google Scholar Baubec, T., Ivanek, R., Lienert, F. & Schubeler, D. Methylation-dependent and -independent genomic targeting principles of the MBD protein family. Cell 153, 480–492 (2013).Article CAS PubMed Google Scholar Hara, M. et al. Disturbance of cardiac gene expression and cardiomyocyte structure predisposes Mecp2-null mice to arrhythmias. Sci. Rep. 5, 11204 (2015).Article PubMed PubMed Central Google Scholar Mayer, S. C. et al. Adrenergic repression of the epigenetic reader MeCP2 facilitates cardiac adaptation in chronic heart failure. Circ. Res. 117, 622–633 (2015).Article CAS PubMed PubMed Central Google Scholar Bin Akhtar, G., Buist, M. & Rastegar, M. MeCP2 and transcriptional control of eukaryotic gene expression. Eur. J. Cell Biol. 101, 151237 (2022).Article Google Scholar Pastor, W. A., Aravind, L. & Rao, A. TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. Nat. Rev. Mol. Cell Biol. 14, 341–356 (2013).Article CAS PubMed PubMed Central Google Scholar Mellen, M., Ayata, P., Dewell, S., Kriaucionis, S. & Heintz, N. MeCP2 binds to 5hmC enriched within active genes and accessible chromatin in the nervous system. Cell 151, 1417–1430 (2012).Article CAS PubMed PubMed Central Google Scholar Preissl, S., Gaulton, K. J. & Ren, B. Characterizing cis-regulatory elements using single-cell epigenomics. Nat. Rev. Genet. 24, 21–43 (2023).Article CAS PubMed Google Scholar He, B. et al. Tissue-specific 5-hydroxymethylcytosine landscape of the human genome. Nat. Commun. 12, 4249 (2021).Article CAS PubMed PubMed Central Google Scholar Bhattacharyya, S. et al. Accurate classification of cardiomyopathy diagnosis by chromatin accessibility. Circulation 146, 878–881 (2022).Article PubMed PubMed Central Google Scholar Tyagi, M., Imam, N., Verma, K. & Patel, A. K. Chromatin remodelers: we are the drivers!!. Nucleus 7, 388–404 (2016).Article CAS PubMed PubMed Central Google Scholar Scherba, J. C. et al. BRG1 is a biomarker of hypertrophic cardiomyopathy in human heart specimens. Sci. Rep. 12, 7996 (2022).Article CAS PubMed PubMed Central Google Scholar Alexander, J. M. et al. Brg1 modulates enhancer activation in mesoderm lineage commitment. Development 142, 1418–1430 (2015).CAS PubMed PubMed Central Google Scholar Hang, C. T. et al. Chromatin regulation by Brg1 underlies heart muscle development and disease. Nature 466, 62–67 (2010).Article CAS PubMed PubMed Central Google Scholar Kouzarides, T. Chromatin modifications and their function. Cell 128, 693–705 (2007).Article CAS PubMed Google Scholar Millan-Zambrano, G., Burton, A., Bannister, A. J. & Schneider, R. Histone post-translational modifications - cause and consequence of genome function. Nat. Rev. Genet. 23, 563–580 (2022).Article CAS PubMed Google Scholar Shlyueva, D., Stampfel, G. & Stark, A. Transcriptional enhancers: from properties to genome-wide predictions. Nat. Rev. Genet. 15, 272–286 (2014).Article CAS PubMed Google Scholar Raisner, R. et al. Enhancer activity requires CBP/P300 bromodomain-dependent histone H3K27 acetylation. Cell Rep. 24, 1722–1729 (2018).Article CAS PubMed Google Scholar Yao, T. P. et al. Gene dosage-dependent embryonic development and proliferation defects in mice lacking the transcriptional integrator p300. Cell 93, 361–372 (1998).Article CAS PubMed Google Scholar Shikama, N. et al. Essential function of p300 acetyltransferase activity in heart, lung and small intestine formation. EMBO J. 22, 5175–5185 (2003).Article CAS PubMed PubMed Central Google Scholar Miyamoto, S. et al. Histone acetyltransferase activity of p300 is required for the promotion of left ventricular remodeling after myocardial infarction in adult mice in vivo. Circulation 113, 679–690 (2006).Article CAS PubMed Google Scholar Blow, M. J. et al. ChIP-Seq identification of weakly conserved heart enhancers. Nat. Genet. 42, 806–810 (2010).Article CAS PubMed PubMed Central Google Scholar May, D. et al. Large-scale discovery of enhancers from human heart tissue. Nat. Genet. 44, 89–93 (2011).Article PubMed PubMed Central Google Scholar Papait, R. et al. Genome-wide analysis of histone marks identifying an epigenetic signature of promoters and enhancers underlying cardiac hypertrophy. Proc. Natl Acad. Sci. USA 110, 20164–20169 (2013).Article CAS PubMed PubMed Central Google Scholar Hohl, M. et al. HDAC4 controls histone methylation in response to elevated cardiac load. J. Clin. Invest. 123, 1359–1370 (2013).Article CAS PubMed PubMed Central Google Scholar Tan, W. L. W. et al. Epigenomes of human hearts reveal new genetic variants relevant for cardiac disease and phenotype. Circ. Res. 127, 761–777 (2020).Article CAS PubMed PubMed Central Google Scholar Pei, J. et al. H3K27ac acetylome signatures reveal the epigenomic reorganization in remodeled non-failing human hearts. Clin. Epigenetics 12, 106 (2020).Article CAS PubMed PubMed Central Google Scholar Dickel, D. E. et al. Genome-wide compendium and functional assessment of in vivo heart enhancers. Nat. Commun. 7, 12923 (2016).Article CAS PubMed PubMed Central Google Scholar He, A. et al. Dynamic GATA4 enhancers shape the chromatin landscape central to heart development and disease. Nat. Commun. 5, 4907 (2014).Article CAS PubMed Google Scholar Gorkin, D. U. et al. An atlas of dynamic chromatin landscapes in mouse fetal development. Nature 583, 744–751 (2020).Article CAS PubMed PubMed Central Google Scholar Nord, A. S. et al. Rapid and pervasive changes in genome-wide enhancer usage during mammalian development. Cell 155, 1521–1531 (2013).Article CAS PubMed PubMed Central Google Scholar Hawe, J. S. et al. Genetic variation influencing DNA methylation provides insights into molecular mechanisms regulating genomic function. Nat. Genet. 54, 18–29 (2022).Article CAS PubMed PubMed Central Google Scholar Bakken, T. E. et al. Comparative cellular analysis of motor cortex in human, marmoset and mouse. Nature 598, 111–119 (2021).Article CAS PubMed PubMed Central Google Scholar Michels, K. B. et al. Recommendations for the design and analysis of epigenome-wide association studies. Nat. Methods 10, 949–955 (2013).Article CAS PubMed Google Scholar Teschendorff, A. E., Zhu, T., Breeze, C. E. & Beck, S. EPISCORE: cell type deconvolution of bulk tissue DNA methylomes from single-cell RNA-Seq data. Genome Biol. 21, 221 (2020).Article CAS PubMed PubMed Central Google Scholar Schmidt, M., Maie, T., Dahl, E., Costa, I. G. & Wagner, W. Deconvolution of cellular subsets in human tissue based on targeted DNA methylation analysis at individual CpG sites. BMC Biol. 18, 178 (2020).Article CAS PubMed PubMed Central Google Scholar Titus, A. J., Gallimore, R. M., Salas, L. A. & Christensen, B. C. Cell-type deconvolution from DNA methylation: a review of recent applications. Hum. Mol. Genet. 26, R216–R224 (2017).Article CAS PubMed PubMed Central Google Scholar van den Oord, E., Xie, L. Y., Tran, C. J., Zhao, M. & Aberg, K. A. A targeted solution for estimating the cell-type composition of bulk samples. BMC Bioinform. 22, 462 (2021).Article Google Scholar Lother, A. et al. Diabetes changes gene expression but not DNA methylation in cardiac cells. J. Mol. Cell. Cardiol. 151, 74–87 (2021).Article CAS PubMed Google Scholar Gilsbach, R. et al. Dynamic DNA methylation orchestrates cardiomyocyte development, maturation and disease. Nat. Commun. 5, 5288 (2014).Article CAS PubMed Google Scholar Preissl, S. et al. Deciphering the epigenetic code of cardiac myocyte transcription. Circ. Res. 117, 413–423 (2015).Article CAS PubMed Google Scholar Jugdutt, B. I. Ventricular remodeling after infarction and the extracellular collagen matrix: when is enough enough? Circulation 108, 1395–1403 (2003).Article PubMed Google Scholar Pinto, A. R. et al. Revisiting cardiac cellular composition. Circ. Res. 118, 400–409 (2016).Article CAS PubMed Google Scholar Voigt, P., Tee, W. W. & Reinberg, D. A double take on bivalent promoters. Genes Dev. 27, 1318–1338 (2013).Article CAS PubMed PubMed Central Google Scholar Macrae, T. A., Fothergill-Robinson, J. & Ramalho-Santos, M. Regulation, functions and transmission of bivalent chromatin during mammalian development. Nat. Rev. Mol. Cell Biol. 24, 6–26 (2022).Article PubMed Google Scholar Toker, L. et al. Genome-wide histone acetylation analysis reveals altered transcriptional regulation in the Parkinson’s disease brain. Mol. Neurodegener. 16, 31 (2021).Article CAS PubMed PubMed Central Google Scholar Mancarci, B. O. et al. Cross-laboratory analysis of brain cell type transcriptomes with applications to interpretation of bulk tissue data. eNeuro https://doi.org/10.1523/ENEURO.0212-17.2017 (2017).Article PubMed PubMed Central Google Scholar Murphy, K. B., Ye, Y., Tsalenchuk, M., Nott, A. & Marzi, S. J. CHAS infers cell type-specific signatures in bulk brain histone acetylation studies of neurological and psychiatric disorders. Cell Rep. Methods 5, 101032 (2025).Article CAS PubMed PubMed Central Google Scholar Toker, L., Nido, G. S. & Tzoulis, C. Not every estimate counts - evaluation of cell composition estimation approaches in brain bulk tissue data. Genome Med. 15, 41 (2023).Article CAS PubMed PubMed Central Google Scholar Gasperini, M., Tome, J. M. & Shendure, J. Towards a comprehensive catalogue of validated and target-linked human enhancers. Nat. Rev. Genet. 21, 292–310 (2020).Article CAS PubMed PubMed Central Google Scholar Zhang, K. et al. A single-cell atlas of chromatin accessibility in the human genome. Cell 184, 5985–6001 e5919 (2021).Article CAS PubMed PubMed Central Google Scholar Hocker, J. D. et al. Cardiac cell type-specific gene regulatory programs and disease risk association. Sci. Adv. 7, eabf1444 (2021).Article CAS PubMed PubMed Central Google Scholar Kuppe, C. et al. Spatial multi-omic map of human myocardial infarction. Nature 608, 766–777 (2022).Article CAS PubMed PubMed Central Google Scholar Ziller, M. J. et al. Charting a dynamic DNA methylation landscape of the human genome. Nature 500, 477–481 (2013).Article CAS PubMed PubMed Central Google Scholar Baubec, T. et al. Genomic profiling of DNA methyltransferases reveals a role for DNMT3B in genic methylation. Nature 520, 243–247 (2015).Article CAS PubMed Google Scholar Nuhrenberg, T. G. et al. Cardiac myocyte de novo DNA methyltransferases 3a/3b are dispensable for cardiac function and remodeling after chronic pressure overload in mice. PLoS ONE 10, e0131019 (2015).Article PubMed PubMed Central Google Scholar Nothjunge, S. et al. DNA methylation signatures follow preformed chromatin compartments in cardiac myocytes. Nat. Commun. 8, 1667 (2017).Article PubMed PubMed Central Google Scholar Vujic, A. et al. Experimental heart failure modelled by the cardiomyocyte-specific loss of an epigenome modifier, DNMT3B. J. Mol. Cell Cardiol. 82, 174–183 (2015).Article CAS PubMed Google Scholar Lahm, H. et al. Congenital heart disease risk loci identified by genome-wide association study in European patients. J. Clin. Invest. 131, e141837 (2021).Article CAS PubMed PubMed Central Google Scholar Stenzig, J. et al. Pharmacological inhibition of DNA methylation attenuates pressure overload-induced cardiac hypertrophy in rats. J. Mol. Cell. Cardiol. 120, 53–63 (2018).Article CAS PubMed Google Scholar Madsen, A. et al. An important role for DNMT3A-mediated DNA methylation in cardiomyocyte metabolism and contractility. Circulation 142, 1562–1578 (2020).Article CAS PubMed PubMed Central Google Scholar Madsen, A. et al. Hypertrophic signaling compensates for contractile and metabolic consequences of DNA methyltransferase 3A loss in human cardiomyocytes. J. Mol. Cell. Cardiol. 154, 115–123 (2021).Article CAS PubMed Google Scholar Tatton-Brown, K. et al. The Tatton-Brown–Rahman syndrome: a clinical study of 55 individuals with de novo constitutive DNMT3A variants. Wellcome Open Res. 3, 46 (2018).Article PubMed PubMed Central Google Scholar Tatton-Brown, K. et al. Mutations in epigenetic regulation genes are a major cause of overgrowth with intellectual disability. Am. J. Hum. Genet. 100, 725–736 (2017).Article CAS PubMed PubMed Central Google Scholar Stadler, M. B. et al. DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature 480, 490–495 (2011).Article CAS PubMed Google Scholar Burger, L., Gaidatzis, D., Schubeler, D. & Stadler, M. B. Identification of active regulatory regions from DNA methylation data. Nucleic Acids Res. 41, e155 (2013).Article PubMed PubMed Central Google Scholar Sonmezer, C. et al. Molecular co-occupancy identifies transcription factor binding cooperativity in vivo. Mol. Cell 81, 255–267 (2021).Article PubMed Google Scholar Luna-Zurita, L. et al. Complex interdependence regulates heterotypic transcription factor distribution and coordinates cardiogenesis. Cell 164, 999–1014 (2016).Article CAS PubMed PubMed Central Google Scholar He, A., Kong, S. W., Ma, Q. & Pu, W. T. Co-occupancy by multiple cardiac transcription factors identifies transcriptional enhancers active in heart. Proc. Natl Acad. Sci. USA 108, 5632–5637 (2011).Article CAS PubMed PubMed Central Google Scholar Akerberg, B. N. et al. A reference map of murine cardiac transcription factor chromatin occupancy identifies dynamic and conserved enhancers. Nat. Commun. 10, 4907 (2019).Article PubMed PubMed Central Google Scholar Ang, Y. S. et al. Disease model of GATA4 mutation reveals transcription factor cooperativity in human cardiogenesis. Cell 167, 1734–1749 e1722 (2016).Article CAS PubMed PubMed Central Google Scholar Jurado Acosta, A. et al. Phosphorylation of GATA4 at serine 105 is required for left ventricular remodelling process in angiotensin II-induced hypertension in rats. Basic Clin. Pharmacol. Toxicol. 127, 178–195 (2020).Article CAS PubMed PubMed Central Google Scholar Liang, Q. et al. The transcription factors GATA4 and GATA6 regulate cardiomyocyte hypertrophy in vitro and in vivo. J. Biol. Chem. 276, 30245–30253 (2001).Article CAS PubMed Google Scholar Zhou, P., He, A. & Pu, W. T. Regulation of GATA4 transcriptional activity in cardiovascular development and disease. Curr. Top. Dev. Biol. 100, 143–169 (2012).Article CAS PubMed Google Scholar Hon, G. C. et al. 5mC oxidation by Tet2 modulates enhancer activity and timing of transcriptome reprogramming during differentiation. Mol. Cell 56, 286–297 (2014).Article CAS PubMed PubMed Central Google Scholar Lan, Y. et al. Stage-specific regulation of DNA methylation by TET enzymes during human cardiac differentiation. Cell Rep. 37, 110095 (2021).Article CAS PubMed PubMed Central Google Scholar Fang, S. et al. Tet inactivation disrupts YY1 binding and long-range chromatin interactions during embryonic heart development. Nat. Commun. 10, 4297 (2019).Article PubMed PubMed Central Google Scholar Weintraub, A. S. et al. YY1 is a structural regulator of enhancer-promoter loops. Cell 171, 1573–1588 (2017).Article CAS PubMed PubMed Central Google Scholar Dahlet, T. et al. Genome-wide analysis in the mouse embryo reveals the importance of DNA methylation for transcription integrity. Nat. Commun. 11, 3153 (2020).Article CAS PubMed PubMed Central Google Scholar Li, E., Bestor, T. H. & Jaenisch, R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69, 915–926 (1992).Article CAS PubMed Google Scholar Wamstad, J. A. et al. Dynamic and coordinated epigenetic regulation of developmental transitions in the cardiac lineage. Cell 151, 206–220 (2012).Article CAS PubMed PubMed Central Google Scholar Ieda, M. et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142, 375–386 (2010).Article CAS PubMed PubMed Central Google Scholar Fu, J. D. et al. Direct reprogramming of human fibroblasts toward a cardiomyocyte-like state. Stem Cell Rep. 1, 235–247 (2013).Article CAS Google Scholar VanDusen, N. J. et al. Massively parallel in vivo CRISPR screening identifies RNF20/40 as epigenetic regulators of cardiomyocyte maturation. Nat. Commun. 12, 4442 (2021).Article CAS PubMed PubMed Central Google Scholar Xin, M., Olson, E. N. & Bassel-Duby, R. Mending broken hearts: cardiac development as a basis for adult heart regeneration and repair. Nat. Rev. Mol. Cell Biol. 14, 529–541 (2013).Article CAS PubMed PubMed Central Google Scholar Nguyen, A. T. et al. DOT1L regulates dystrophin expression and is critical for cardiac function. Genes Dev. 25, 263–274 (2011).Article CAS PubMed PubMed Central Google Scholar Cattaneo, P. et al. DOT1L regulates chamber-specific transcriptional networks during cardiogenesis and mediates postnatal cell cycle withdrawal. Nat. Commun. 13, 7444 (2022).Article CAS PubMed PubMed Central Google Scholar Hesse, M. et al. Direct visualization of cell division using high-resolution imaging of M-phase of the cell cycle. Nat. Commun. 3, 1076 (2012).Article PubMed Google Scholar Monroe, T. O. et al. YAP partially reprograms chromatin accessibility to directly induce adult cardiogenesis in vivo. Dev. Cell 48, 765–779 (2019).Article CAS PubMed PubMed Central Google Scholar Chen, Y. et al. Reversible reprogramming of cardiomyocytes to a fetal state drives heart regeneration in mice. Science 373, 1537–1540 (2021).Article CAS PubMed Google Scholar Garry, G. A. & Olson, E. N. Reprogramming of cardiac cell fate as a therapeutic strategy for ischemic heart disease. J. Mol. Cell. Cardiol. 179, 2–6 (2023).Article CAS PubMed Google Scholar Hashimoto, H. et al. Cardiac reprogramming factors synergistically activate genome-wide cardiogenic stage-specific enhancers. Cell Stem Cell 25, 69–86 (2019).Article CAS PubMed PubMed Central Google Scholar Gunthel, M. et al. Epigenetic state changes underlie metabolic switch in mouse post-infarction border zone cardiomyocytes. J. Cardiovasc. Dev. Dis. 8, 134 (2021).PubMed PubMed Central Google Scholar Lee, D. P. et al. Robust CTCF-based chromatin architecture underpins epigenetic changes in the heart failure stress-gene response. Circulation 139, 1937–1956 (2019).Article CAS PubMed Google Scholar Zhang, Y. et al. Transcriptionally active HERV-H retrotransposons demarcate topologically associating domains in human pluripotent stem cells. Nat. Genet. 51, 1380–1388 (2019).Article CAS PubMed PubMed Central Google Scholar Montefiori, L. E. et al. A promoter interaction map for cardiovascular disease genetics. eLife 7, e35788 (2018).Article PubMed PubMed Central Google Scholar Greenwald, W. W. et al. Subtle changes in chromatin loop contact propensity are associated with differential gene regulation and expression. Nat. Commun. 10, 1054 (2019).Article PubMed PubMed Central Google Scholar Bertero, A. et al. Dynamics of genome reorganization during human cardiogenesis reveal an RBM20-dependent splicing factory. Nat. Commun. 10, 1538 (2019).Article PubMed PubMed Central Google Scholar Haydar, S. et al. Linking chamber-specific spatial chromatin interactions to disease variants and gene programs in human cardiomyocytes. Preprint at Res. Sq. https://doi.org/10.21203/rs.3.rs-5039927/v1 (2024).Man, J. C. K. et al. Variant intronic enhancer controls SCN10A-short expression and heart conduction. Circulation 144, 229–242 (2021).Article CAS PubMed Google Scholar Man, J. C. K. et al. Genetic dissection of a super enhancer controlling the Nppa-Nppb cluster in the heart. Circ. Res. 128, 115–129 (2021).Article CAS PubMed Google Scholar Anene-Nzelu, C. G. et al. Assigning distal genomic enhancers to cardiac disease-causing genes. Circulation 142, 910–912 (2020).Article PubMed PubMed Central Google Scholar Visel, A., Minovitsky, S., Dubchak, I. & Pennacchio, L. A. VISTA enhancer browser — a database of tissue-specific human enhancers. Nucleic Acids Res. 35, D88–D92 (2007).Article CAS PubMed Google Scholar van Duijvenboden, K. et al. Conserved NPPB+ border zone switches from MEF2- to AP-1-driven gene program. Circulation 140, 864–879 (2019).Article PubMed Google Scholar Leblanc, F. J. A. et al. Atrial fibrillation variant-to-gene prioritization through cross-ancestry eQTL and single-nucleus multiomic analyses. iScience 27, 110660 (2024).Article CAS PubMed PubMed Central Google Scholar Kosicki, M. et al. VISTA Enhancer browser: an updated database of tissue-specific developmental enhancers. Nucleic Acids Res. https://doi.org/10.1093/nar/gkae940 (2024).Article PubMed Central Google Scholar Xiao, F. et al. Functional dissection of human cardiac enhancers and noncoding de novo variants in congenital heart disease. Nat. Genet. 56, 420–430 (2024).Article CAS PubMed PubMed Central Google Scholar Wang, Z. et al. The long noncoding RNA Chaer defines an epigenetic checkpoint in cardiac hypertrophy. Nat. Med. 22, 1131–1139 (2016).Article CAS PubMed PubMed Central Google Scholar Thienpont, B. et al. The H3K9 dimethyltransferases EHMT1/2 protect against pathological cardiac hypertrophy. J. Clin. Invest. 127, 335–348 (2017).Article PubMed Google Scholar Papait, R. et al. Histone methyltransferase G9a is required for cardiomyocyte homeostasis and hypertrophy. Circulation 136, 1233–1246 (2017).Article CAS PubMed Google Scholar Gillette, T. G. & Hill, J. A. Readers, writers, and erasers: chromatin as the whiteboard of heart disease. Circ. Res. 116, 1245–1253 (2015).Article CAS PubMed PubMed Central Google Scholar Neumayr, C. et al. Differential cofactor dependencies define distinct types of human enhancers. Nature 606, 406–413 (2022).Article CAS PubMed PubMed Central Google Scholar Litvinukova, M. et al. Cells of the adult human heart. Nature 588, 466–472 (2020).Article CAS PubMed PubMed Central Google Scholar Reichart, D. et al. Pathogenic variants damage cell composition and single cell transcription in cardiomyopathies. Science 377, eabo1984 (2022).Article CAS PubMed PubMed Central Google Scholar Buenrostro, J. D. et al. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523, 486–490 (2015).Article CAS PubMed PubMed Central Google Scholar Domcke, S. et al. A human cell atlas of fetal chromatin accessibility. Science 370, eaba7612 (2020).Article CAS PubMed PubMed Central Google Scholar Kaya-Okur, H. S. et al. CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat. Commun. 10, 1930 (2019).Article PubMed PubMed Central Google Scholar Chan, A. S. F. et al. Spatio-temporal dynamics of the fibrotic niche in cardiac repair. Preprint at bioRxiv https://doi.org/10.1101/2024.11.10.622609 (2024).Kanemaru, K. et al. Spatially resolved multiomics of human cardiac niches. Nature 619, 801–810 (2023).Article CAS PubMed PubMed Central Google Scholar Deng, Y. et al. Spatial-CUT&Tag: spatially resolved chromatin modification profiling at the cellular level. Science 375, 681–686 (2022).Article CAS PubMed PubMed Central Google Scholar Gaulton, K. J., Preissl, S. & Ren, B. Interpreting non-coding disease-associated human variants using single-cell epigenomics. Nat. Rev. Genet. 24, 516–534 (2023).Article CAS PubMed PubMed Central Google Scholar Cuomo, A. S. E., Nathan, A., Raychaudhuri, S., MacArthur, D. G. & Powell, J. E. Single-cell genomics meets human genetics. Nat. Rev. Genet. 24, 535–549 (2023).Article CAS PubMed PubMed Central Google Scholar Sweat, M. E. et al. Tbx5 maintains atrial identity in post-natal cardiomyocytes by regulating an atrial-specific enhancer network. Nat. Cardiovasc. Res. 2, 881–898 (2023).Article CAS PubMed PubMed Central Google Scholar Steimle, J. D. et al. Decoding the PITX2-controlled genetic network in atrial fibrillation. JCI Insight 7, e158895 (2022).Article PubMed PubMed Central Google Scholar Zaidi, S. et al. De novo mutations in histone-modifying genes in congenital heart disease. Nature 498, 220–223 (2013).Article CAS PubMed PubMed Central Google Scholar Richter, F. et al. Genomic analyses implicate noncoding de novo variants in congenital heart disease. Nat. Genet. 52, 769–777 (2020).Article CAS PubMed PubMed Central Google Scholar Ameen, M. et al. Integrative single-cell analysis of cardiogenesis identifies developmental trajectories and non-coding mutations in congenital heart disease. Cell 185, 4937–4953 (2022).Article CAS PubMed PubMed Central Google Scholar Wang, L. et al. Single-cell dual-omics reveals the transcriptomic and epigenomic diversity of cardiac non-myocytes. Cardiovasc. Res. 118, 1548–1563 (2022).Article CAS PubMed Google Scholar Alexanian, M. et al. Chromatin remodelling drives immune cell-fibroblast communication in heart failure. Nature https://doi.org/10.1038/s41586-024-08085-6 (2024).Article PubMed PubMed Central Google Scholar Alexanian, M. et al. A transcriptional switch governs fibroblast activation in heart disease. Nature 595, 438–443 (2021).Article CAS PubMed PubMed Central Google Scholar Amrute, J. M. et al. Defining cardiac functional recovery in end-stage heart failure at single-cell resolution. Nat. Cardiovasc. Res. 2, 399–416 (2023).Article CAS PubMed PubMed Central Google Scholar Amrute, J. M. et al. Targeting immune-fibroblast cell communication in heart failure. Nature https://doi.org/10.1038/s41586-024-08008-5 (2024).Article PubMed PubMed Central Google Scholar Su, Q. et al. Single-cell insights: pioneering an integrated atlas of chromatin accessibility and transcriptomic landscapes in diabetic cardiomyopathy. Cardiovasc. Diabetol. 23, 139 (2024).Article CAS PubMed PubMed Central Google Scholar Ren, L. et al. Recent advances in epigenetic anticancer therapeutics and future perspectives. Front. Genet. 13, 1085391 (2022).Article CAS PubMed Google Scholar Perner, F., Gadrey, J. Y., Armstrong, S. A. & Kuhn, M. W. M. Targeting the Menin-KMT2A interaction in leukemia: lessons learned and future directions. Int. J. Cancer https://doi.org/10.1002/ijc.35332 (2025).Article PubMed Google Scholar Abend, A. & Kehat, I. Histone deacetylases as therapeutic targets–from cancer to cardiac disease. Pharmacol. Ther. 147, 55–62 (2015).Article CAS PubMed Google Scholar Haldar, S. M. & McKinsey, T. A. BET-ting on chromatin-based therapeutics for heart failure. J. Mol. Cell Cardiol. 74, 98–102 (2014).Article CAS PubMed Google Scholar Kee, H. J. et al. Inhibition of histone deacetylation blocks cardiac hypertrophy induced by angiotensin II infusion and aortic banding. Circulation 113, 51–59 (2006).Article CAS PubMed Google Scholar Granger, A. et al. Histone deacetylase inhibition reduces myocardial ischemia-reperfusion injury in mice. FASEB J. 22, 3549–3560 (2008).Article CAS PubMed PubMed Central Google Scholar Travers, J. G. et al. HDAC inhibition reverses preexisting diastolic dysfunction and blocks covert extracellular matrix remodeling. Circulation 143, 1874–1890 (2021).Article CAS PubMed PubMed Central Google Scholar Ranjbarvaziri, S. et al. Targeting HDAC6 to treat heart failure with preserved ejection fraction in mice. Nat. Commun. 15, 1352 (2024).Article CAS PubMed PubMed Central Google Scholar Lu, J., Qian, S. & Sun, Z. Targeting histone deacetylase in cardiac diseases. Front. Physiol. 15, 1405569 (2024).Article PubMed PubMed Central Google Scholar Chun, P. Therapeutic effects of histone deacetylase inhibitors on heart disease. Arch. Pharm. Res. 43, 1276–1296 (2020).Article CAS PubMed Google Scholar McKinsey, T. A. et al. Emerging epigenetic therapies of cardiac fibrosis and remodelling in heart failure: from basic mechanisms to early clinical development. Cardiovasc. Res. 118, 3482–3498 (2023).Article PubMed Google Scholar Jebessa, Z. H. et al. The lipid droplet-associated protein ABHD5 protects the heart through proteolysis of HDAC4. Nat. Metab. 1, 1157–1167 (2019).Article CAS PubMed PubMed Central Google Scholar Lehmann, L. H. et al. A proteolytic fragment of histone deacetylase 4 protects the heart from failure by regulating the hexosamine biosynthetic pathway. Nat. Med. 24, 62–72 (2018).Article CAS PubMed Google Scholar Finke, D. et al. Histone deacetylase 4 deletion broadly affects cardiac epigenetic repression and regulates transcriptional susceptibility via H3K9 methylation. J. Mol. Cell. Cardiol. 162, 119–129 (2022).Article CAS PubMed Google Scholar Sabari, B. R. et al. Coactivator condensation at super-enhancers links phase separation and gene control. Science 361, eaar3958 (2018).Article PubMed PubMed Central Google Scholar Padmanabhan, A. et al. BRD4 (bromodomain-containing protein 4) interacts with GATA4 (GATA binding protein 4) to govern mitochondrial homeostasis in adult cardiomyocytes. Circulation 142, 2338–2355 (2020).Article CAS PubMed PubMed Central Google Scholar Anand, P. et al. BET bromodomains mediate transcriptional pause release in heart failure. Cell 154, 569–582 (2013).Article CAS PubMed PubMed Central Google Scholar Filippakopoulos, P. et al. Selective inhibition of BET bromodomains. Nature 468, 1067–1073 (2010).Article CAS PubMed PubMed Central Google Scholar Schwalm, M. P. & Knapp, S. BET bromodomain inhibitors. Curr. Opin. Chem. Biol. 68, 102148 (2022).Article CAS PubMed Google Scholar Pervaiz, M., Mishra, P. & Gunther, S. Bromodomain drug discovery - the past, the present, and the future. Chem. Rec. 18, 1808–1817 (2018).Article CAS PubMed Google Scholar Stratton, M. S. et al. Dynamic chromatin targeting of BRD4 stimulates cardiac fibroblast activation. Circ. Res. 125, 662–677 (2019).Article CAS PubMed PubMed Central Google Scholar Alexanian, M. et al. Chromatin remodelling drives immune cell-fibroblast communication in heart failure. Nature 635, 434–443 (2024).Article CAS PubMed PubMed Central Google Scholar Stratton, M. S., Haldar, S. M. & McKinsey, T. A. BRD4 inhibition for the treatment of pathological organ fibrosis. F1000Res 6, F1000 (2017).Article PubMed PubMed Central Google Scholar Hsu, A. et al. Targeting transcription in heart failure via CDK7/12/13 inhibition. Nat. Commun. 13, 4345 (2022).Article CAS PubMed PubMed Central Google Scholar Nunez, J. K. et al. Genome-wide programmable transcriptional memory by CRISPR-based epigenome editing. Cell 184, 2503–2519 (2021).Article CAS PubMed PubMed Central Google Scholar Gilbert, L. A. et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159, 647–661 (2014).Article CAS PubMed PubMed Central Google Scholar Schoger, E., Zimmermann, W. H., Cyganek, L. & Zelarayan, L. C. Establishment of a second generation homozygous CRISPRa human induced pluripotent stem cell (hiPSC) line for enhanced levels of endogenous gene activation. Stem Cell Res. 56, 102518 (2021).Article CAS PubMed Google Scholar Schoger, E. et al. CRISPR-mediated activation of endogenous gene expression in the postnatal heart. Circ. Res. 126, 6–24 (2020).Article CAS PubMed Google Scholar Laurette, P. et al. In vivo silencing of regulatory elements using a single AAV-CRISPRi vector. Circ. Res. 134, 223–225 (2024).Article CAS PubMed Google Scholar Han, J. L., Heinson, Y. W., Chua, C. J., Liu, W. & Entcheva, E. CRISPRi gene modulation and all-optical electrophysiology in post-differentiated human iPSC-cardiomyocytes. Commun. Biol. 6, 1236 (2023).Article CAS PubMed PubMed Central Google Scholar Amrute, J. M. et al. Single cell variant to enhancer to gene map for coronary artery disease. Preprint at medRxiv https://doi.org/10.1101/2024.11.13.24317257 (2024).Deng, L. et al. Atlas of cardiac endothelial cell enhancer elements linking the mineralocorticoid receptor to pathological gene expression. Sci. Adv. 10, eadj5101 (2024).Article CAS PubMed PubMed Central Google Scholar Thakore, P. I. et al. RNA-guided transcriptional silencing in vivo with S. aureus CRISPR-Cas9 repressors. Nat. Commun. 9, 1674 (2018).Article PubMed PubMed Central Google Scholar Tycko, J. et al. Development of compact transcriptional effectors using high-throughput measurements in diverse contexts. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02442-6 (2024).Article PubMed PubMed Central Google Scholar Vora, S. et al. Rational design of a compact CRISPR-Cas9 activator for AAV-mediated delivery. Preprint at bioRxiv https://doi.org/10.1101/298620 (2018).Weinmann, J. et al. Identification of a myotropic AAV by massively parallel in vivo evaluation of barcoded capsid variants. Nat. Commun. 11, 5432 (2020).Article CAS PubMed PubMed Central Google Scholar Mazurek, R. et al. AAV delivery strategy with mechanical support for safe and efficacious cardiac gene transfer in swine. Nat. Commun. 15, 10450 (2024).Article CAS PubMed PubMed Central Google Scholar Lek, A. et al. Death after high-dose rAAV9 gene therapy in a patient with Duchenne’s muscular dystrophy. N. Engl. J. Med. 389, 1203–1210 (2023).Article CAS PubMed PubMed Central Google Scholar Engreitz, J. M. et al. Deciphering the impact of genomic variation on function. Nature 633, 47–57 (2024).Article Google Scholar Matharu, N. et al. CRISPR-mediated activation of a promoter or enhancer rescues obesity caused by haploinsufficiency. Science 363, eaau0629 (2019).Article CAS PubMed Google Scholar O’Connell, T. D., Rodrigo, M. C. & Simpson, P. C. Isolation and culture of adult mouse cardiac myocytes. Methods Mol. Biol. 357, 271–296 (2007).PubMed Google Scholar Ackers-Johnson, M. & Foo, R. S. Langendorff-free isolation and propagation of adult mouse cardiomyocytes. Methods Mol. Biol. 1940, 193–204 (2019).Article CAS PubMed Google Scholar Denisenko, E. et al. Systematic assessment of tissue dissociation and storage biases in single-cell and single-nucleus RNA-seq workflows. Genome Biol. 21, 130 (2020).Article CAS PubMed PubMed Central Google Scholar Li, H. et al. Optimized Langendorff perfusion system for cardiomyocyte isolation in adult mouse heart. J. Cell. Mol. Med. 24, 14619–14625 (2020).Article CAS PubMed PubMed Central Google Scholar Liu, B. et al. Comparative study on isolation and mitochondrial function of adult mouse and rat cardiomyocytes. J. Mol. Cell. Cardiol. 136, 64–71 (2019).Article CAS PubMed Google Scholar Nicks, A. M. et al. Standardised method for cardiomyocyte isolation and purification from individual murine neonatal, infant, and adult hearts. J. Mol. Cell. Cardiol. 170, 47–59 (2022).Article CAS PubMed Google Scholar Larcher, V. et al. An autofluorescence-based method for the isolation of highly purified ventricular cardiomyocytes. Cardiovasc. Res. 114, 409–416 (2018).Article CAS PubMed Google Scholar Bergmann, O. et al. Dynamics of cell generation and turnover in the human heart. Cell 161, 1566–1575 (2015).Article CAS PubMed Google Scholar Bergmann, O. et al. Identification of cardiomyocyte nuclei and assessment of ploidy for the analysis of cell turnover. Exp. Cell Res. 317, 188–194 (2011).Article CAS PubMed Google Scholar Bergmann, O. et al. Evidence for cardiomyocyte renewal in humans. Science 324, 98–102 (2009).Article CAS PubMed PubMed Central Google Scholar Robinson, E. L. et al. MSK-mediated phosphorylation of histone H3 Ser28 couples MAPK signalling with early gene induction and cardiac hypertrophy. Cells 11, 604 (2022).Article CAS PubMed PubMed Central Google Scholar Hill, M. C. & Martin, J. F. Epigenetic assays in purified cardiomyocyte nuclei. Methods Mol. Biol. 2158, 307–321 (2021).Article CAS PubMed Google Scholar See, K. et al. Single cardiomyocyte nuclear transcriptomes reveal a lincRNA-regulated de-differentiation and cell cycle stress-response in vivo. Nat. Commun. 8, 225 (2017).Article PubMed PubMed Central Google Scholar Cui, M. & Olson, E. N. Protocol for single-nucleus transcriptomics of diploid and tetraploid cardiomyocytes in murine hearts. STAR Protoc. 1, 100049 (2020).Article PubMed PubMed Central Google Scholar Chatterjee, A. et al. MOF acetyl transferase regulates transcription and respiration in mitochondria. Cell 167, 722–738 (2016).Article CAS PubMed Google Scholar Cheedipudi, S. M. et al. Genomic reorganization of lamin-associated domains in cardiac myocytes is associated with differential gene expression and DNA methylation in human dilated cardiomyopathy. Circ. Res. 124, 1198–1213 (2019).Article CAS PubMed PubMed Central Google Scholar Raulf, A. et al. Transgenic systems for unequivocal identification of cardiac myocyte nuclei and analysis of cardiomyocyte cell cycle status. Basic Res. Cardiol. 110, 33 (2015).Article PubMed PubMed Central Google Scholar Thul, P. J. et al. A subcellular map of the human proteome. Science 356, eaal3321 (2017).Article PubMed Google Scholar Uhlen, M. et al. Proteomics. Tissue-based map of the human proteome. Science 347, 1260419 (2015).Article PubMed Google Scholar Wu, A. Z. et al. Phospholamban is concentrated in the nuclear envelope of cardiomyocytes and involved in perinuclear/nuclear calcium handling. J. Mol. Cell. Cardiol. 100, 1–8 (2016).Article CAS PubMed Google Scholar Hesse, M. et al. Proximity to injury, but neither number of nuclei nor ploidy define pathological adaptation and plasticity in cardiomyocytes. J. Mol. Cell. Cardiol. 152, 95–104 (2021).Article CAS PubMed Google Scholar Krane, M. et al. Sequential defects in cardiac lineage commitment and maturation cause hypoplastic left heart syndrome. Circulation 144, 1409–1428 (2021).Article PubMed PubMed Central Google Scholar van Ouwerkerk, A. F. et al. Patient-specific TBX5-G125R variant induces profound transcriptional deregulation and atrial dysfunction. Circulation 145, 606–619 (2022).Article PubMed PubMed Central Google Scholar Wirth, L. et al. Gene expression networks in endothelial cells from failing human hearts. Am. J. Physiol. Heart Circ. Physiol. 327, H573–H581 (2024).Article CAS PubMed Google Scholar Mo, A. et al. Epigenomic signatures of neuronal diversity in the mammalian brain. Neuron 86, 1369–1384 (2015).Article CAS PubMed PubMed Central Google Scholar Bhattacharyya, S., Sathe, A. A., Bhakta, M., Xing, C. & Munshi, N. V. PAN-INTACT enables direct isolation of lineage-specific nuclei from fibrous tissues. PLoS ONE 14, e0214677 (2019).Article CAS PubMed PubMed Central Google Scholar Yucel, N. et al. Cardiac endothelial cells maintain open chromatin and expression of cardiomyocyte myofibrillar genes. eLife 9, e55730 (2020).Article CAS PubMed PubMed Central Google Scholar Zhang, M., Lui, K. O. & Zhou, B. Application of new lineage tracing techniques in cardiovascular development and physiology. Circ. Res. 134, 445–458 (2024).Article CAS PubMed Google Scholar Yoshida, Y. & Yamanaka, S. Induced pluripotent stem cells 10 years later: for cardiac applications. Circ. Res. 120, 1958–1968 (2017).Article CAS PubMed Google Scholar Buikema, J. W. & Wu, S. M. Untangling the biology of genetic cardiomyopathies with pluripotent stem cell disease models. Curr. Cardiol. Rep. 19, 30 (2017).Article PubMed Google Scholar Brandao, K. O., Tabel, V. A., Atsma, D. E., Mummery, C. L. & Davis, R. P. Human pluripotent stem cell models of cardiac disease: from mechanisms to therapies. Dis. Model. Mech. 10, 1039–1059 (2017).Article CAS PubMed PubMed Central Google Scholar Morton, S. U., Quiat, D., Seidman, J. G. & Seidman, C. E. Genomic frontiers in congenital heart disease. Nat. Rev. Cardiol. 19, 26–42 (2022).Article PubMed Google Scholar Mills, R. J. & Hudson, J. E. Bioengineering adult human heart tissue: how close are we? APL Bioeng. 3, 010901 (2019).Article PubMed PubMed Central Google Scholar Cho, S., Discher, D. E., Leong, K. W., Vunjak-Novakovic, G. & Wu, J. C. Challenges and opportunities for the next generation of cardiovascular tissue engineering. Nat. Methods https://doi.org/10.1038/s41592-022-01591-3 (2022).Article PubMed PubMed Central Google Scholar