Cardiac epigenome in heart development and disease

Wait 5 sec.

ENCODE Project Consortium. Expanded encyclopaedias of DNA elements in the human and mouse genomes. Nature 583, 699–710 (2020).Article  Google Scholar Allis, C. D. & Jenuwein, T. The molecular hallmarks of epigenetic control. Nat. Rev. Genet. 17, 487–500 (2016).Article  CAS  PubMed  Google Scholar Klose, R. J. & Bird, A. P. Genomic DNA methylation: the mark and its mediators. Trends Biochem. Sci. 31, 89–97 (2006).Article  CAS  PubMed  Google Scholar Bird, A. DNA methylation patterns and epigenetic memory. Genes Dev. 16, 6–21 (2002).Article  CAS  PubMed  Google Scholar Bird, A. P. DNA methylation and the frequency of CpG in animal DNA. Nucleic Acids Res. 8, 1499–1504 (1980).Article  CAS  PubMed  PubMed Central  Google Scholar Ponger, L., Duret, L. & Mouchiroud, D. Determinants of CpG islands: expression in early embryo and isochore structure. Genome Res. 11, 1854–1860 (2001).Article  CAS  PubMed  PubMed Central  Google Scholar Angeloni, A. & Bogdanovic, O. Sequence determinants, function, and evolution of CpG islands. Biochem. Soc. Trans. 49, 1109–1119 (2021).Article  CAS  PubMed  PubMed Central  Google Scholar Isbel, L., Grand, R. S. & Schubeler, D. Generating specificity in genome regulation through transcription factor sensitivity to chromatin. Nat. Rev. Genet. 23, 728–740 (2022).Article  CAS  PubMed  Google Scholar Domcke, S. et al. Competition between DNA methylation and transcription factors determines binding of NRF1. Nature 528, 575–579 (2015).Article  CAS  PubMed  Google Scholar Yin, Y. et al. Impact of cytosine methylation on DNA binding specificities of human transcription factors. Science 356, eaaj2239 (2017).Article  PubMed  PubMed Central  Google Scholar Weber, M. et al. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat. Genet. 37, 853–862 (2005).Article  CAS  PubMed  Google Scholar Movassagh, M. et al. Distinct epigenomic features in end-stage failing human hearts. Circulation 124, 2411–2422 (2011).Article  PubMed  PubMed Central  Google Scholar Movassagh, M. et al. Differential DNA methylation correlates with differential expression of angiogenic factors in human heart failure. PLoS ONE 5, e8564 (2010).Article  PubMed  PubMed Central  Google Scholar Kranzhofer, D. K. et al. 5′-Hydroxymethylcytosine precedes loss of CpG methylation in enhancers and genes undergoing activation in cardiomyocyte maturation. PLoS ONE 11, e0166575 (2016).Article  PubMed  PubMed Central  Google Scholar Greco, C. M. et al. DNA hydroxymethylation controls cardiomyocyte gene expression in development and hypertrophy. Nat. Commun. 7, 12418 (2016).Article  CAS  PubMed  PubMed Central  Google Scholar Laird, P. W. Principles and challenges of genomewide DNA methylation analysis. Nat. Rev. Genet. 11, 191–203 (2010).Article  CAS  PubMed  Google Scholar Lister, R. et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462, 315–322 (2009).Article  CAS  PubMed  PubMed Central  Google Scholar Morrison, J. et al. Evaluation of whole-genome DNA methylation sequencing library preparation protocols. Epigenetics Chromatin 14, 28 (2021).Article  CAS  PubMed  PubMed Central  Google Scholar Pidsley, R. et al. Critical evaluation of the Illumina MethylationEPIC BeadChip microarray for whole-genome DNA methylation profiling. Genome Biol. 17, 208 (2016).Article  PubMed  PubMed Central  Google Scholar Hon, G. C. et al. Epigenetic memory at embryonic enhancers identified in DNA methylation maps from adult mouse tissues. Nat. Genet. 45, 1198–1206 (2013).Article  CAS  PubMed  PubMed Central  Google Scholar He, Y. et al. Spatiotemporal DNA methylome dynamics of the developing mouse fetus. Nature 583, 752–759 (2020).Article  CAS  PubMed  PubMed Central  Google Scholar Gilsbach, R. et al. Distinct epigenetic programs regulate cardiac myocyte development and disease in the human heart in vivo. Nat. Commun. 9, 391 (2018).Article  PubMed  PubMed Central  Google Scholar Gunthel, M., Barnett, P. & Christoffels, V. M. Development, proliferation, and growth of the mammalian heart. Mol. Ther. 26, 1599–1609 (2018).Article  CAS  PubMed  PubMed Central  Google Scholar Ivey, M. J. et al. Resident fibroblast expansion during cardiac growth and remodeling. J. Mol. Cell Cardiol. 114, 161–174 (2018).Article  CAS  PubMed  Google Scholar Meder, B. et al. Epigenome-Wide Association Study identifies cardiac gene patterning and a novel class of biomarkers for heart failure. Circulation 136, 1528–1544 (2017).Article  CAS  PubMed  Google Scholar Haas, J. et al. Alterations in cardiac DNA methylation in human dilated cardiomyopathy. EMBO Mol. Med. 5, 413–429 (2013).Article  CAS  PubMed  PubMed Central  Google Scholar Pepin, M. E. et al. Racial and socioeconomic disparity associates with differences in cardiac DNA methylation among men with end-stage heart failure. Am. J. Physiol. Heart Circ. Physiol. 320, H2066–H2079 (2021).Article  CAS  PubMed  PubMed Central  Google Scholar Pepin, M. E. et al. DNA methylation reprograms cardiac metabolic gene expression in end-stage human heart failure. Am. J. Physiol. Heart Circ. Physiol. 317, H674–H684 (2019).Article  CAS  PubMed  PubMed Central  Google Scholar Chapski, D. J. et al. Early adaptive chromatin remodeling events precede pathologic phenotypes and are reinforced in the failing heart. J. Mol. Cell. Cardiol. 160, 73–86 (2021).Article  CAS  PubMed  PubMed Central  Google Scholar Chen, H. et al. DNA methylation indicates susceptibility to isoproterenol-induced cardiac pathology and is associated with chromatin states. Circ. Res. 118, 786–797 (2016).Article  CAS  PubMed  PubMed Central  Google Scholar Oeing, C. U. et al. Indirect epigenetic testing identifies a diagnostic signature of cardiomyocyte DNA methylation in heart failure. Basic Res. Cardiol. 118, 9 (2023).Article  CAS  PubMed  PubMed Central  Google Scholar Baubec, T., Ivanek, R., Lienert, F. & Schubeler, D. Methylation-dependent and -independent genomic targeting principles of the MBD protein family. Cell 153, 480–492 (2013).Article  CAS  PubMed  Google Scholar Hara, M. et al. Disturbance of cardiac gene expression and cardiomyocyte structure predisposes Mecp2-null mice to arrhythmias. Sci. Rep. 5, 11204 (2015).Article  PubMed  PubMed Central  Google Scholar Mayer, S. C. et al. Adrenergic repression of the epigenetic reader MeCP2 facilitates cardiac adaptation in chronic heart failure. Circ. Res. 117, 622–633 (2015).Article  CAS  PubMed  PubMed Central  Google Scholar Bin Akhtar, G., Buist, M. & Rastegar, M. MeCP2 and transcriptional control of eukaryotic gene expression. Eur. J. Cell Biol. 101, 151237 (2022).Article  Google Scholar Pastor, W. A., Aravind, L. & Rao, A. TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. Nat. Rev. Mol. Cell Biol. 14, 341–356 (2013).Article  CAS  PubMed  PubMed Central  Google Scholar Mellen, M., Ayata, P., Dewell, S., Kriaucionis, S. & Heintz, N. MeCP2 binds to 5hmC enriched within active genes and accessible chromatin in the nervous system. Cell 151, 1417–1430 (2012).Article  CAS  PubMed  PubMed Central  Google Scholar Preissl, S., Gaulton, K. J. & Ren, B. Characterizing cis-regulatory elements using single-cell epigenomics. Nat. Rev. Genet. 24, 21–43 (2023).Article  CAS  PubMed  Google Scholar He, B. et al. Tissue-specific 5-hydroxymethylcytosine landscape of the human genome. Nat. Commun. 12, 4249 (2021).Article  CAS  PubMed  PubMed Central  Google Scholar Bhattacharyya, S. et al. Accurate classification of cardiomyopathy diagnosis by chromatin accessibility. Circulation 146, 878–881 (2022).Article  PubMed  PubMed Central  Google Scholar Tyagi, M., Imam, N., Verma, K. & Patel, A. K. Chromatin remodelers: we are the drivers!!. Nucleus 7, 388–404 (2016).Article  CAS  PubMed  PubMed Central  Google Scholar Scherba, J. C. et al. BRG1 is a biomarker of hypertrophic cardiomyopathy in human heart specimens. Sci. Rep. 12, 7996 (2022).Article  CAS  PubMed  PubMed Central  Google Scholar Alexander, J. M. et al. Brg1 modulates enhancer activation in mesoderm lineage commitment. Development 142, 1418–1430 (2015).CAS  PubMed  PubMed Central  Google Scholar Hang, C. T. et al. Chromatin regulation by Brg1 underlies heart muscle development and disease. Nature 466, 62–67 (2010).Article  CAS  PubMed  PubMed Central  Google Scholar Kouzarides, T. Chromatin modifications and their function. Cell 128, 693–705 (2007).Article  CAS  PubMed  Google Scholar Millan-Zambrano, G., Burton, A., Bannister, A. J. & Schneider, R. Histone post-translational modifications - cause and consequence of genome function. Nat. Rev. Genet. 23, 563–580 (2022).Article  CAS  PubMed  Google Scholar Shlyueva, D., Stampfel, G. & Stark, A. Transcriptional enhancers: from properties to genome-wide predictions. Nat. Rev. Genet. 15, 272–286 (2014).Article  CAS  PubMed  Google Scholar Raisner, R. et al. Enhancer activity requires CBP/P300 bromodomain-dependent histone H3K27 acetylation. Cell Rep. 24, 1722–1729 (2018).Article  CAS  PubMed  Google Scholar Yao, T. P. et al. Gene dosage-dependent embryonic development and proliferation defects in mice lacking the transcriptional integrator p300. Cell 93, 361–372 (1998).Article  CAS  PubMed  Google Scholar Shikama, N. et al. Essential function of p300 acetyltransferase activity in heart, lung and small intestine formation. EMBO J. 22, 5175–5185 (2003).Article  CAS  PubMed  PubMed Central  Google Scholar Miyamoto, S. et al. Histone acetyltransferase activity of p300 is required for the promotion of left ventricular remodeling after myocardial infarction in adult mice in vivo. Circulation 113, 679–690 (2006).Article  CAS  PubMed  Google Scholar Blow, M. J. et al. ChIP-Seq identification of weakly conserved heart enhancers. Nat. Genet. 42, 806–810 (2010).Article  CAS  PubMed  PubMed Central  Google Scholar May, D. et al. Large-scale discovery of enhancers from human heart tissue. Nat. Genet. 44, 89–93 (2011).Article  PubMed  PubMed Central  Google Scholar Papait, R. et al. Genome-wide analysis of histone marks identifying an epigenetic signature of promoters and enhancers underlying cardiac hypertrophy. Proc. Natl Acad. Sci. USA 110, 20164–20169 (2013).Article  CAS  PubMed  PubMed Central  Google Scholar Hohl, M. et al. HDAC4 controls histone methylation in response to elevated cardiac load. J. Clin. Invest. 123, 1359–1370 (2013).Article  CAS  PubMed  PubMed Central  Google Scholar Tan, W. L. W. et al. Epigenomes of human hearts reveal new genetic variants relevant for cardiac disease and phenotype. Circ. Res. 127, 761–777 (2020).Article  CAS  PubMed  PubMed Central  Google Scholar Pei, J. et al. H3K27ac acetylome signatures reveal the epigenomic reorganization in remodeled non-failing human hearts. Clin. Epigenetics 12, 106 (2020).Article  CAS  PubMed  PubMed Central  Google Scholar Dickel, D. E. et al. Genome-wide compendium and functional assessment of in vivo heart enhancers. Nat. Commun. 7, 12923 (2016).Article  CAS  PubMed  PubMed Central  Google Scholar He, A. et al. Dynamic GATA4 enhancers shape the chromatin landscape central to heart development and disease. Nat. Commun. 5, 4907 (2014).Article  CAS  PubMed  Google Scholar Gorkin, D. U. et al. An atlas of dynamic chromatin landscapes in mouse fetal development. Nature 583, 744–751 (2020).Article  CAS  PubMed  PubMed Central  Google Scholar Nord, A. S. et al. Rapid and pervasive changes in genome-wide enhancer usage during mammalian development. Cell 155, 1521–1531 (2013).Article  CAS  PubMed  PubMed Central  Google Scholar Hawe, J. S. et al. Genetic variation influencing DNA methylation provides insights into molecular mechanisms regulating genomic function. Nat. Genet. 54, 18–29 (2022).Article  CAS  PubMed  PubMed Central  Google Scholar Bakken, T. E. et al. Comparative cellular analysis of motor cortex in human, marmoset and mouse. Nature 598, 111–119 (2021).Article  CAS  PubMed  PubMed Central  Google Scholar Michels, K. B. et al. Recommendations for the design and analysis of epigenome-wide association studies. Nat. Methods 10, 949–955 (2013).Article  CAS  PubMed  Google Scholar Teschendorff, A. E., Zhu, T., Breeze, C. E. & Beck, S. EPISCORE: cell type deconvolution of bulk tissue DNA methylomes from single-cell RNA-Seq data. Genome Biol. 21, 221 (2020).Article  CAS  PubMed  PubMed Central  Google Scholar Schmidt, M., Maie, T., Dahl, E., Costa, I. G. & Wagner, W. Deconvolution of cellular subsets in human tissue based on targeted DNA methylation analysis at individual CpG sites. BMC Biol. 18, 178 (2020).Article  CAS  PubMed  PubMed Central  Google Scholar Titus, A. J., Gallimore, R. M., Salas, L. A. & Christensen, B. C. Cell-type deconvolution from DNA methylation: a review of recent applications. Hum. Mol. Genet. 26, R216–R224 (2017).Article  CAS  PubMed  PubMed Central  Google Scholar van den Oord, E., Xie, L. Y., Tran, C. J., Zhao, M. & Aberg, K. A. A targeted solution for estimating the cell-type composition of bulk samples. BMC Bioinform. 22, 462 (2021).Article  Google Scholar Lother, A. et al. Diabetes changes gene expression but not DNA methylation in cardiac cells. J. Mol. Cell. Cardiol. 151, 74–87 (2021).Article  CAS  PubMed  Google Scholar Gilsbach, R. et al. Dynamic DNA methylation orchestrates cardiomyocyte development, maturation and disease. Nat. Commun. 5, 5288 (2014).Article  CAS  PubMed  Google Scholar Preissl, S. et al. Deciphering the epigenetic code of cardiac myocyte transcription. Circ. Res. 117, 413–423 (2015).Article  CAS  PubMed  Google Scholar Jugdutt, B. I. Ventricular remodeling after infarction and the extracellular collagen matrix: when is enough enough? Circulation 108, 1395–1403 (2003).Article  PubMed  Google Scholar Pinto, A. R. et al. Revisiting cardiac cellular composition. Circ. Res. 118, 400–409 (2016).Article  CAS  PubMed  Google Scholar Voigt, P., Tee, W. W. & Reinberg, D. A double take on bivalent promoters. Genes Dev. 27, 1318–1338 (2013).Article  CAS  PubMed  PubMed Central  Google Scholar Macrae, T. A., Fothergill-Robinson, J. & Ramalho-Santos, M. Regulation, functions and transmission of bivalent chromatin during mammalian development. Nat. Rev. Mol. Cell Biol. 24, 6–26 (2022).Article  PubMed  Google Scholar Toker, L. et al. Genome-wide histone acetylation analysis reveals altered transcriptional regulation in the Parkinson’s disease brain. Mol. Neurodegener. 16, 31 (2021).Article  CAS  PubMed  PubMed Central  Google Scholar Mancarci, B. O. et al. Cross-laboratory analysis of brain cell type transcriptomes with applications to interpretation of bulk tissue data. eNeuro https://doi.org/10.1523/ENEURO.0212-17.2017 (2017).Article  PubMed  PubMed Central  Google Scholar Murphy, K. B., Ye, Y., Tsalenchuk, M., Nott, A. & Marzi, S. J. CHAS infers cell type-specific signatures in bulk brain histone acetylation studies of neurological and psychiatric disorders. Cell Rep. Methods 5, 101032 (2025).Article  CAS  PubMed  PubMed Central  Google Scholar Toker, L., Nido, G. S. & Tzoulis, C. Not every estimate counts - evaluation of cell composition estimation approaches in brain bulk tissue data. Genome Med. 15, 41 (2023).Article  CAS  PubMed  PubMed Central  Google Scholar Gasperini, M., Tome, J. M. & Shendure, J. Towards a comprehensive catalogue of validated and target-linked human enhancers. Nat. Rev. Genet. 21, 292–310 (2020).Article  CAS  PubMed  PubMed Central  Google Scholar Zhang, K. et al. A single-cell atlas of chromatin accessibility in the human genome. Cell 184, 5985–6001 e5919 (2021).Article  CAS  PubMed  PubMed Central  Google Scholar Hocker, J. D. et al. Cardiac cell type-specific gene regulatory programs and disease risk association. Sci. Adv. 7, eabf1444 (2021).Article  CAS  PubMed  PubMed Central  Google Scholar Kuppe, C. et al. Spatial multi-omic map of human myocardial infarction. Nature 608, 766–777 (2022).Article  CAS  PubMed  PubMed Central  Google Scholar Ziller, M. J. et al. Charting a dynamic DNA methylation landscape of the human genome. Nature 500, 477–481 (2013).Article  CAS  PubMed  PubMed Central  Google Scholar Baubec, T. et al. Genomic profiling of DNA methyltransferases reveals a role for DNMT3B in genic methylation. Nature 520, 243–247 (2015).Article  CAS  PubMed  Google Scholar Nuhrenberg, T. G. et al. Cardiac myocyte de novo DNA methyltransferases 3a/3b are dispensable for cardiac function and remodeling after chronic pressure overload in mice. PLoS ONE 10, e0131019 (2015).Article  PubMed  PubMed Central  Google Scholar Nothjunge, S. et al. DNA methylation signatures follow preformed chromatin compartments in cardiac myocytes. Nat. Commun. 8, 1667 (2017).Article  PubMed  PubMed Central  Google Scholar Vujic, A. et al. Experimental heart failure modelled by the cardiomyocyte-specific loss of an epigenome modifier, DNMT3B. J. Mol. Cell Cardiol. 82, 174–183 (2015).Article  CAS  PubMed  Google Scholar Lahm, H. et al. Congenital heart disease risk loci identified by genome-wide association study in European patients. J. Clin. Invest. 131, e141837 (2021).Article  CAS  PubMed  PubMed Central  Google Scholar Stenzig, J. et al. Pharmacological inhibition of DNA methylation attenuates pressure overload-induced cardiac hypertrophy in rats. J. Mol. Cell. Cardiol. 120, 53–63 (2018).Article  CAS  PubMed  Google Scholar Madsen, A. et al. An important role for DNMT3A-mediated DNA methylation in cardiomyocyte metabolism and contractility. Circulation 142, 1562–1578 (2020).Article  CAS  PubMed  PubMed Central  Google Scholar Madsen, A. et al. Hypertrophic signaling compensates for contractile and metabolic consequences of DNA methyltransferase 3A loss in human cardiomyocytes. J. Mol. Cell. Cardiol. 154, 115–123 (2021).Article  CAS  PubMed  Google Scholar Tatton-Brown, K. et al. The Tatton-Brown–Rahman syndrome: a clinical study of 55 individuals with de novo constitutive DNMT3A variants. Wellcome Open Res. 3, 46 (2018).Article  PubMed  PubMed Central  Google Scholar Tatton-Brown, K. et al. Mutations in epigenetic regulation genes are a major cause of overgrowth with intellectual disability. Am. J. Hum. Genet. 100, 725–736 (2017).Article  CAS  PubMed  PubMed Central  Google Scholar Stadler, M. B. et al. DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature 480, 490–495 (2011).Article  CAS  PubMed  Google Scholar Burger, L., Gaidatzis, D., Schubeler, D. & Stadler, M. B. Identification of active regulatory regions from DNA methylation data. Nucleic Acids Res. 41, e155 (2013).Article  PubMed  PubMed Central  Google Scholar Sonmezer, C. et al. Molecular co-occupancy identifies transcription factor binding cooperativity in vivo. Mol. Cell 81, 255–267 (2021).Article  PubMed  Google Scholar Luna-Zurita, L. et al. Complex interdependence regulates heterotypic transcription factor distribution and coordinates cardiogenesis. Cell 164, 999–1014 (2016).Article  CAS  PubMed  PubMed Central  Google Scholar He, A., Kong, S. W., Ma, Q. & Pu, W. T. Co-occupancy by multiple cardiac transcription factors identifies transcriptional enhancers active in heart. Proc. Natl Acad. Sci. USA 108, 5632–5637 (2011).Article  CAS  PubMed  PubMed Central  Google Scholar Akerberg, B. N. et al. A reference map of murine cardiac transcription factor chromatin occupancy identifies dynamic and conserved enhancers. Nat. Commun. 10, 4907 (2019).Article  PubMed  PubMed Central  Google Scholar Ang, Y. S. et al. Disease model of GATA4 mutation reveals transcription factor cooperativity in human cardiogenesis. Cell 167, 1734–1749 e1722 (2016).Article  CAS  PubMed  PubMed Central  Google Scholar Jurado Acosta, A. et al. Phosphorylation of GATA4 at serine 105 is required for left ventricular remodelling process in angiotensin II-induced hypertension in rats. Basic Clin. Pharmacol. Toxicol. 127, 178–195 (2020).Article  CAS  PubMed  PubMed Central  Google Scholar Liang, Q. et al. The transcription factors GATA4 and GATA6 regulate cardiomyocyte hypertrophy in vitro and in vivo. J. Biol. Chem. 276, 30245–30253 (2001).Article  CAS  PubMed  Google Scholar Zhou, P., He, A. & Pu, W. T. Regulation of GATA4 transcriptional activity in cardiovascular development and disease. Curr. Top. Dev. Biol. 100, 143–169 (2012).Article  CAS  PubMed  Google Scholar Hon, G. C. et al. 5mC oxidation by Tet2 modulates enhancer activity and timing of transcriptome reprogramming during differentiation. Mol. Cell 56, 286–297 (2014).Article  CAS  PubMed  PubMed Central  Google Scholar Lan, Y. et al. Stage-specific regulation of DNA methylation by TET enzymes during human cardiac differentiation. Cell Rep. 37, 110095 (2021).Article  CAS  PubMed  PubMed Central  Google Scholar Fang, S. et al. Tet inactivation disrupts YY1 binding and long-range chromatin interactions during embryonic heart development. Nat. Commun. 10, 4297 (2019).Article  PubMed  PubMed Central  Google Scholar Weintraub, A. S. et al. YY1 is a structural regulator of enhancer-promoter loops. Cell 171, 1573–1588 (2017).Article  CAS  PubMed  PubMed Central  Google Scholar Dahlet, T. et al. Genome-wide analysis in the mouse embryo reveals the importance of DNA methylation for transcription integrity. Nat. Commun. 11, 3153 (2020).Article  CAS  PubMed  PubMed Central  Google Scholar Li, E., Bestor, T. H. & Jaenisch, R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69, 915–926 (1992).Article  CAS  PubMed  Google Scholar Wamstad, J. A. et al. Dynamic and coordinated epigenetic regulation of developmental transitions in the cardiac lineage. Cell 151, 206–220 (2012).Article  CAS  PubMed  PubMed Central  Google Scholar Ieda, M. et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142, 375–386 (2010).Article  CAS  PubMed  PubMed Central  Google Scholar Fu, J. D. et al. Direct reprogramming of human fibroblasts toward a cardiomyocyte-like state. Stem Cell Rep. 1, 235–247 (2013).Article  CAS  Google Scholar VanDusen, N. J. et al. Massively parallel in vivo CRISPR screening identifies RNF20/40 as epigenetic regulators of cardiomyocyte maturation. Nat. Commun. 12, 4442 (2021).Article  CAS  PubMed  PubMed Central  Google Scholar Xin, M., Olson, E. N. & Bassel-Duby, R. Mending broken hearts: cardiac development as a basis for adult heart regeneration and repair. Nat. Rev. Mol. Cell Biol. 14, 529–541 (2013).Article  CAS  PubMed  PubMed Central  Google Scholar Nguyen, A. T. et al. DOT1L regulates dystrophin expression and is critical for cardiac function. Genes Dev. 25, 263–274 (2011).Article  CAS  PubMed  PubMed Central  Google Scholar Cattaneo, P. et al. DOT1L regulates chamber-specific transcriptional networks during cardiogenesis and mediates postnatal cell cycle withdrawal. Nat. Commun. 13, 7444 (2022).Article  CAS  PubMed  PubMed Central  Google Scholar Hesse, M. et al. Direct visualization of cell division using high-resolution imaging of M-phase of the cell cycle. Nat. Commun. 3, 1076 (2012).Article  PubMed  Google Scholar Monroe, T. O. et al. YAP partially reprograms chromatin accessibility to directly induce adult cardiogenesis in vivo. Dev. Cell 48, 765–779 (2019).Article  CAS  PubMed  PubMed Central  Google Scholar Chen, Y. et al. Reversible reprogramming of cardiomyocytes to a fetal state drives heart regeneration in mice. Science 373, 1537–1540 (2021).Article  CAS  PubMed  Google Scholar Garry, G. A. & Olson, E. N. Reprogramming of cardiac cell fate as a therapeutic strategy for ischemic heart disease. J. Mol. Cell. Cardiol. 179, 2–6 (2023).Article  CAS  PubMed  Google Scholar Hashimoto, H. et al. Cardiac reprogramming factors synergistically activate genome-wide cardiogenic stage-specific enhancers. Cell Stem Cell 25, 69–86 (2019).Article  CAS  PubMed  PubMed Central  Google Scholar Gunthel, M. et al. Epigenetic state changes underlie metabolic switch in mouse post-infarction border zone cardiomyocytes. J. Cardiovasc. Dev. Dis. 8, 134 (2021).PubMed  PubMed Central  Google Scholar Lee, D. P. et al. Robust CTCF-based chromatin architecture underpins epigenetic changes in the heart failure stress-gene response. Circulation 139, 1937–1956 (2019).Article  CAS  PubMed  Google Scholar Zhang, Y. et al. Transcriptionally active HERV-H retrotransposons demarcate topologically associating domains in human pluripotent stem cells. Nat. Genet. 51, 1380–1388 (2019).Article  CAS  PubMed  PubMed Central  Google Scholar Montefiori, L. E. et al. A promoter interaction map for cardiovascular disease genetics. eLife 7, e35788 (2018).Article  PubMed  PubMed Central  Google Scholar Greenwald, W. W. et al. Subtle changes in chromatin loop contact propensity are associated with differential gene regulation and expression. Nat. Commun. 10, 1054 (2019).Article  PubMed  PubMed Central  Google Scholar Bertero, A. et al. Dynamics of genome reorganization during human cardiogenesis reveal an RBM20-dependent splicing factory. Nat. Commun. 10, 1538 (2019).Article  PubMed  PubMed Central  Google Scholar Haydar, S. et al. Linking chamber-specific spatial chromatin interactions to disease variants and gene programs in human cardiomyocytes. Preprint at Res. Sq. https://doi.org/10.21203/rs.3.rs-5039927/v1 (2024).Man, J. C. K. et al. Variant intronic enhancer controls SCN10A-short expression and heart conduction. Circulation 144, 229–242 (2021).Article  CAS  PubMed  Google Scholar Man, J. C. K. et al. Genetic dissection of a super enhancer controlling the Nppa-Nppb cluster in the heart. Circ. Res. 128, 115–129 (2021).Article  CAS  PubMed  Google Scholar Anene-Nzelu, C. G. et al. Assigning distal genomic enhancers to cardiac disease-causing genes. Circulation 142, 910–912 (2020).Article  PubMed  PubMed Central  Google Scholar Visel, A., Minovitsky, S., Dubchak, I. & Pennacchio, L. A. VISTA enhancer browser — a database of tissue-specific human enhancers. Nucleic Acids Res. 35, D88–D92 (2007).Article  CAS  PubMed  Google Scholar van Duijvenboden, K. et al. Conserved NPPB+ border zone switches from MEF2- to AP-1-driven gene program. Circulation 140, 864–879 (2019).Article  PubMed  Google Scholar Leblanc, F. J. A. et al. Atrial fibrillation variant-to-gene prioritization through cross-ancestry eQTL and single-nucleus multiomic analyses. iScience 27, 110660 (2024).Article  CAS  PubMed  PubMed Central  Google Scholar Kosicki, M. et al. VISTA Enhancer browser: an updated database of tissue-specific developmental enhancers. Nucleic Acids Res. https://doi.org/10.1093/nar/gkae940 (2024).Article  PubMed Central  Google Scholar Xiao, F. et al. Functional dissection of human cardiac enhancers and noncoding de novo variants in congenital heart disease. Nat. Genet. 56, 420–430 (2024).Article  CAS  PubMed  PubMed Central  Google Scholar Wang, Z. et al. The long noncoding RNA Chaer defines an epigenetic checkpoint in cardiac hypertrophy. Nat. Med. 22, 1131–1139 (2016).Article  CAS  PubMed  PubMed Central  Google Scholar Thienpont, B. et al. The H3K9 dimethyltransferases EHMT1/2 protect against pathological cardiac hypertrophy. J. Clin. Invest. 127, 335–348 (2017).Article  PubMed  Google Scholar Papait, R. et al. Histone methyltransferase G9a is required for cardiomyocyte homeostasis and hypertrophy. Circulation 136, 1233–1246 (2017).Article  CAS  PubMed  Google Scholar Gillette, T. G. & Hill, J. A. Readers, writers, and erasers: chromatin as the whiteboard of heart disease. Circ. Res. 116, 1245–1253 (2015).Article  CAS  PubMed  PubMed Central  Google Scholar Neumayr, C. et al. Differential cofactor dependencies define distinct types of human enhancers. Nature 606, 406–413 (2022).Article  CAS  PubMed  PubMed Central  Google Scholar Litvinukova, M. et al. Cells of the adult human heart. Nature 588, 466–472 (2020).Article  CAS  PubMed  PubMed Central  Google Scholar Reichart, D. et al. Pathogenic variants damage cell composition and single cell transcription in cardiomyopathies. Science 377, eabo1984 (2022).Article  CAS  PubMed  PubMed Central  Google Scholar Buenrostro, J. D. et al. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523, 486–490 (2015).Article  CAS  PubMed  PubMed Central  Google Scholar Domcke, S. et al. A human cell atlas of fetal chromatin accessibility. Science 370, eaba7612 (2020).Article  CAS  PubMed  PubMed Central  Google Scholar Kaya-Okur, H. S. et al. CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat. Commun. 10, 1930 (2019).Article  PubMed  PubMed Central  Google Scholar Chan, A. S. F. et al. Spatio-temporal dynamics of the fibrotic niche in cardiac repair. Preprint at bioRxiv https://doi.org/10.1101/2024.11.10.622609 (2024).Kanemaru, K. et al. Spatially resolved multiomics of human cardiac niches. Nature 619, 801–810 (2023).Article  CAS  PubMed  PubMed Central  Google Scholar Deng, Y. et al. Spatial-CUT&Tag: spatially resolved chromatin modification profiling at the cellular level. Science 375, 681–686 (2022).Article  CAS  PubMed  PubMed Central  Google Scholar Gaulton, K. J., Preissl, S. & Ren, B. Interpreting non-coding disease-associated human variants using single-cell epigenomics. Nat. Rev. Genet. 24, 516–534 (2023).Article  CAS  PubMed  PubMed Central  Google Scholar Cuomo, A. S. E., Nathan, A., Raychaudhuri, S., MacArthur, D. G. & Powell, J. E. Single-cell genomics meets human genetics. Nat. Rev. Genet. 24, 535–549 (2023).Article  CAS  PubMed  PubMed Central  Google Scholar Sweat, M. E. et al. Tbx5 maintains atrial identity in post-natal cardiomyocytes by regulating an atrial-specific enhancer network. Nat. Cardiovasc. Res. 2, 881–898 (2023).Article  CAS  PubMed  PubMed Central  Google Scholar Steimle, J. D. et al. Decoding the PITX2-controlled genetic network in atrial fibrillation. JCI Insight 7, e158895 (2022).Article  PubMed  PubMed Central  Google Scholar Zaidi, S. et al. De novo mutations in histone-modifying genes in congenital heart disease. Nature 498, 220–223 (2013).Article  CAS  PubMed  PubMed Central  Google Scholar Richter, F. et al. Genomic analyses implicate noncoding de novo variants in congenital heart disease. Nat. Genet. 52, 769–777 (2020).Article  CAS  PubMed  PubMed Central  Google Scholar Ameen, M. et al. Integrative single-cell analysis of cardiogenesis identifies developmental trajectories and non-coding mutations in congenital heart disease. Cell 185, 4937–4953 (2022).Article  CAS  PubMed  PubMed Central  Google Scholar Wang, L. et al. Single-cell dual-omics reveals the transcriptomic and epigenomic diversity of cardiac non-myocytes. Cardiovasc. Res. 118, 1548–1563 (2022).Article  CAS  PubMed  Google Scholar Alexanian, M. et al. Chromatin remodelling drives immune cell-fibroblast communication in heart failure. Nature https://doi.org/10.1038/s41586-024-08085-6 (2024).Article  PubMed  PubMed Central  Google Scholar Alexanian, M. et al. A transcriptional switch governs fibroblast activation in heart disease. Nature 595, 438–443 (2021).Article  CAS  PubMed  PubMed Central  Google Scholar Amrute, J. M. et al. Defining cardiac functional recovery in end-stage heart failure at single-cell resolution. Nat. Cardiovasc. Res. 2, 399–416 (2023).Article  CAS  PubMed  PubMed Central  Google Scholar Amrute, J. M. et al. Targeting immune-fibroblast cell communication in heart failure. Nature https://doi.org/10.1038/s41586-024-08008-5 (2024).Article  PubMed  PubMed Central  Google Scholar Su, Q. et al. Single-cell insights: pioneering an integrated atlas of chromatin accessibility and transcriptomic landscapes in diabetic cardiomyopathy. Cardiovasc. Diabetol. 23, 139 (2024).Article  CAS  PubMed  PubMed Central  Google Scholar Ren, L. et al. Recent advances in epigenetic anticancer therapeutics and future perspectives. Front. Genet. 13, 1085391 (2022).Article  CAS  PubMed  Google Scholar Perner, F., Gadrey, J. Y., Armstrong, S. A. & Kuhn, M. W. M. Targeting the Menin-KMT2A interaction in leukemia: lessons learned and future directions. Int. J. Cancer https://doi.org/10.1002/ijc.35332 (2025).Article  PubMed  Google Scholar Abend, A. & Kehat, I. Histone deacetylases as therapeutic targets–from cancer to cardiac disease. Pharmacol. Ther. 147, 55–62 (2015).Article  CAS  PubMed  Google Scholar Haldar, S. M. & McKinsey, T. A. BET-ting on chromatin-based therapeutics for heart failure. J. Mol. Cell Cardiol. 74, 98–102 (2014).Article  CAS  PubMed  Google Scholar Kee, H. J. et al. Inhibition of histone deacetylation blocks cardiac hypertrophy induced by angiotensin II infusion and aortic banding. Circulation 113, 51–59 (2006).Article  CAS  PubMed  Google Scholar Granger, A. et al. Histone deacetylase inhibition reduces myocardial ischemia-reperfusion injury in mice. FASEB J. 22, 3549–3560 (2008).Article  CAS  PubMed  PubMed Central  Google Scholar Travers, J. G. et al. HDAC inhibition reverses preexisting diastolic dysfunction and blocks covert extracellular matrix remodeling. Circulation 143, 1874–1890 (2021).Article  CAS  PubMed  PubMed Central  Google Scholar Ranjbarvaziri, S. et al. Targeting HDAC6 to treat heart failure with preserved ejection fraction in mice. Nat. Commun. 15, 1352 (2024).Article  CAS  PubMed  PubMed Central  Google Scholar Lu, J., Qian, S. & Sun, Z. Targeting histone deacetylase in cardiac diseases. Front. Physiol. 15, 1405569 (2024).Article  PubMed  PubMed Central  Google Scholar Chun, P. Therapeutic effects of histone deacetylase inhibitors on heart disease. Arch. Pharm. Res. 43, 1276–1296 (2020).Article  CAS  PubMed  Google Scholar McKinsey, T. A. et al. Emerging epigenetic therapies of cardiac fibrosis and remodelling in heart failure: from basic mechanisms to early clinical development. Cardiovasc. Res. 118, 3482–3498 (2023).Article  PubMed  Google Scholar Jebessa, Z. H. et al. The lipid droplet-associated protein ABHD5 protects the heart through proteolysis of HDAC4. Nat. Metab. 1, 1157–1167 (2019).Article  CAS  PubMed  PubMed Central  Google Scholar Lehmann, L. H. et al. A proteolytic fragment of histone deacetylase 4 protects the heart from failure by regulating the hexosamine biosynthetic pathway. Nat. Med. 24, 62–72 (2018).Article  CAS  PubMed  Google Scholar Finke, D. et al. Histone deacetylase 4 deletion broadly affects cardiac epigenetic repression and regulates transcriptional susceptibility via H3K9 methylation. J. Mol. Cell. Cardiol. 162, 119–129 (2022).Article  CAS  PubMed  Google Scholar Sabari, B. R. et al. Coactivator condensation at super-enhancers links phase separation and gene control. Science 361, eaar3958 (2018).Article  PubMed  PubMed Central  Google Scholar Padmanabhan, A. et al. BRD4 (bromodomain-containing protein 4) interacts with GATA4 (GATA binding protein 4) to govern mitochondrial homeostasis in adult cardiomyocytes. Circulation 142, 2338–2355 (2020).Article  CAS  PubMed  PubMed Central  Google Scholar Anand, P. et al. BET bromodomains mediate transcriptional pause release in heart failure. Cell 154, 569–582 (2013).Article  CAS  PubMed  PubMed Central  Google Scholar Filippakopoulos, P. et al. Selective inhibition of BET bromodomains. Nature 468, 1067–1073 (2010).Article  CAS  PubMed  PubMed Central  Google Scholar Schwalm, M. P. & Knapp, S. BET bromodomain inhibitors. Curr. Opin. Chem. Biol. 68, 102148 (2022).Article  CAS  PubMed  Google Scholar Pervaiz, M., Mishra, P. & Gunther, S. Bromodomain drug discovery - the past, the present, and the future. Chem. Rec. 18, 1808–1817 (2018).Article  CAS  PubMed  Google Scholar Stratton, M. S. et al. Dynamic chromatin targeting of BRD4 stimulates cardiac fibroblast activation. Circ. Res. 125, 662–677 (2019).Article  CAS  PubMed  PubMed Central  Google Scholar Alexanian, M. et al. Chromatin remodelling drives immune cell-fibroblast communication in heart failure. Nature 635, 434–443 (2024).Article  CAS  PubMed  PubMed Central  Google Scholar Stratton, M. S., Haldar, S. M. & McKinsey, T. A. BRD4 inhibition for the treatment of pathological organ fibrosis. F1000Res 6, F1000 (2017).Article  PubMed  PubMed Central  Google Scholar Hsu, A. et al. Targeting transcription in heart failure via CDK7/12/13 inhibition. Nat. Commun. 13, 4345 (2022).Article  CAS  PubMed  PubMed Central  Google Scholar Nunez, J. K. et al. Genome-wide programmable transcriptional memory by CRISPR-based epigenome editing. Cell 184, 2503–2519 (2021).Article  CAS  PubMed  PubMed Central  Google Scholar Gilbert, L. A. et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159, 647–661 (2014).Article  CAS  PubMed  PubMed Central  Google Scholar Schoger, E., Zimmermann, W. H., Cyganek, L. & Zelarayan, L. C. Establishment of a second generation homozygous CRISPRa human induced pluripotent stem cell (hiPSC) line for enhanced levels of endogenous gene activation. Stem Cell Res. 56, 102518 (2021).Article  CAS  PubMed  Google Scholar Schoger, E. et al. CRISPR-mediated activation of endogenous gene expression in the postnatal heart. Circ. Res. 126, 6–24 (2020).Article  CAS  PubMed  Google Scholar Laurette, P. et al. In vivo silencing of regulatory elements using a single AAV-CRISPRi vector. Circ. Res. 134, 223–225 (2024).Article  CAS  PubMed  Google Scholar Han, J. L., Heinson, Y. W., Chua, C. J., Liu, W. & Entcheva, E. CRISPRi gene modulation and all-optical electrophysiology in post-differentiated human iPSC-cardiomyocytes. Commun. Biol. 6, 1236 (2023).Article  CAS  PubMed  PubMed Central  Google Scholar Amrute, J. M. et al. Single cell variant to enhancer to gene map for coronary artery disease. Preprint at medRxiv https://doi.org/10.1101/2024.11.13.24317257 (2024).Deng, L. et al. Atlas of cardiac endothelial cell enhancer elements linking the mineralocorticoid receptor to pathological gene expression. Sci. Adv. 10, eadj5101 (2024).Article  CAS  PubMed  PubMed Central  Google Scholar Thakore, P. I. et al. RNA-guided transcriptional silencing in vivo with S. aureus CRISPR-Cas9 repressors. Nat. Commun. 9, 1674 (2018).Article  PubMed  PubMed Central  Google Scholar Tycko, J. et al. Development of compact transcriptional effectors using high-throughput measurements in diverse contexts. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02442-6 (2024).Article  PubMed  PubMed Central  Google Scholar Vora, S. et al. Rational design of a compact CRISPR-Cas9 activator for AAV-mediated delivery. Preprint at bioRxiv https://doi.org/10.1101/298620 (2018).Weinmann, J. et al. Identification of a myotropic AAV by massively parallel in vivo evaluation of barcoded capsid variants. Nat. Commun. 11, 5432 (2020).Article  CAS  PubMed  PubMed Central  Google Scholar Mazurek, R. et al. AAV delivery strategy with mechanical support for safe and efficacious cardiac gene transfer in swine. Nat. Commun. 15, 10450 (2024).Article  CAS  PubMed  PubMed Central  Google Scholar Lek, A. et al. Death after high-dose rAAV9 gene therapy in a patient with Duchenne’s muscular dystrophy. N. Engl. J. Med. 389, 1203–1210 (2023).Article  CAS  PubMed  PubMed Central  Google Scholar Engreitz, J. M. et al. Deciphering the impact of genomic variation on function. Nature 633, 47–57 (2024).Article  Google Scholar Matharu, N. et al. CRISPR-mediated activation of a promoter or enhancer rescues obesity caused by haploinsufficiency. Science 363, eaau0629 (2019).Article  CAS  PubMed  Google Scholar O’Connell, T. D., Rodrigo, M. C. & Simpson, P. C. Isolation and culture of adult mouse cardiac myocytes. Methods Mol. Biol. 357, 271–296 (2007).PubMed  Google Scholar Ackers-Johnson, M. & Foo, R. S. Langendorff-free isolation and propagation of adult mouse cardiomyocytes. Methods Mol. Biol. 1940, 193–204 (2019).Article  CAS  PubMed  Google Scholar Denisenko, E. et al. Systematic assessment of tissue dissociation and storage biases in single-cell and single-nucleus RNA-seq workflows. Genome Biol. 21, 130 (2020).Article  CAS  PubMed  PubMed Central  Google Scholar Li, H. et al. Optimized Langendorff perfusion system for cardiomyocyte isolation in adult mouse heart. J. Cell. Mol. Med. 24, 14619–14625 (2020).Article  CAS  PubMed  PubMed Central  Google Scholar Liu, B. et al. Comparative study on isolation and mitochondrial function of adult mouse and rat cardiomyocytes. J. Mol. Cell. Cardiol. 136, 64–71 (2019).Article  CAS  PubMed  Google Scholar Nicks, A. M. et al. Standardised method for cardiomyocyte isolation and purification from individual murine neonatal, infant, and adult hearts. J. Mol. Cell. Cardiol. 170, 47–59 (2022).Article  CAS  PubMed  Google Scholar Larcher, V. et al. An autofluorescence-based method for the isolation of highly purified ventricular cardiomyocytes. Cardiovasc. Res. 114, 409–416 (2018).Article  CAS  PubMed  Google Scholar Bergmann, O. et al. Dynamics of cell generation and turnover in the human heart. Cell 161, 1566–1575 (2015).Article  CAS  PubMed  Google Scholar Bergmann, O. et al. Identification of cardiomyocyte nuclei and assessment of ploidy for the analysis of cell turnover. Exp. Cell Res. 317, 188–194 (2011).Article  CAS  PubMed  Google Scholar Bergmann, O. et al. Evidence for cardiomyocyte renewal in humans. Science 324, 98–102 (2009).Article  CAS  PubMed  PubMed Central  Google Scholar Robinson, E. L. et al. MSK-mediated phosphorylation of histone H3 Ser28 couples MAPK signalling with early gene induction and cardiac hypertrophy. Cells 11, 604 (2022).Article  CAS  PubMed  PubMed Central  Google Scholar Hill, M. C. & Martin, J. F. Epigenetic assays in purified cardiomyocyte nuclei. Methods Mol. Biol. 2158, 307–321 (2021).Article  CAS  PubMed  Google Scholar See, K. et al. Single cardiomyocyte nuclear transcriptomes reveal a lincRNA-regulated de-differentiation and cell cycle stress-response in vivo. Nat. Commun. 8, 225 (2017).Article  PubMed  PubMed Central  Google Scholar Cui, M. & Olson, E. N. Protocol for single-nucleus transcriptomics of diploid and tetraploid cardiomyocytes in murine hearts. STAR Protoc. 1, 100049 (2020).Article  PubMed  PubMed Central  Google Scholar Chatterjee, A. et al. MOF acetyl transferase regulates transcription and respiration in mitochondria. Cell 167, 722–738 (2016).Article  CAS  PubMed  Google Scholar Cheedipudi, S. M. et al. Genomic reorganization of lamin-associated domains in cardiac myocytes is associated with differential gene expression and DNA methylation in human dilated cardiomyopathy. Circ. Res. 124, 1198–1213 (2019).Article  CAS  PubMed  PubMed Central  Google Scholar Raulf, A. et al. Transgenic systems for unequivocal identification of cardiac myocyte nuclei and analysis of cardiomyocyte cell cycle status. Basic Res. Cardiol. 110, 33 (2015).Article  PubMed  PubMed Central  Google Scholar Thul, P. J. et al. A subcellular map of the human proteome. Science 356, eaal3321 (2017).Article  PubMed  Google Scholar Uhlen, M. et al. Proteomics. Tissue-based map of the human proteome. Science 347, 1260419 (2015).Article  PubMed  Google Scholar Wu, A. Z. et al. Phospholamban is concentrated in the nuclear envelope of cardiomyocytes and involved in perinuclear/nuclear calcium handling. J. Mol. Cell. Cardiol. 100, 1–8 (2016).Article  CAS  PubMed  Google Scholar Hesse, M. et al. Proximity to injury, but neither number of nuclei nor ploidy define pathological adaptation and plasticity in cardiomyocytes. J. Mol. Cell. Cardiol. 152, 95–104 (2021).Article  CAS  PubMed  Google Scholar Krane, M. et al. Sequential defects in cardiac lineage commitment and maturation cause hypoplastic left heart syndrome. Circulation 144, 1409–1428 (2021).Article  PubMed  PubMed Central  Google Scholar van Ouwerkerk, A. F. et al. Patient-specific TBX5-G125R variant induces profound transcriptional deregulation and atrial dysfunction. Circulation 145, 606–619 (2022).Article  PubMed  PubMed Central  Google Scholar Wirth, L. et al. Gene expression networks in endothelial cells from failing human hearts. Am. J. Physiol. Heart Circ. Physiol. 327, H573–H581 (2024).Article  CAS  PubMed  Google Scholar Mo, A. et al. Epigenomic signatures of neuronal diversity in the mammalian brain. Neuron 86, 1369–1384 (2015).Article  CAS  PubMed  PubMed Central  Google Scholar Bhattacharyya, S., Sathe, A. A., Bhakta, M., Xing, C. & Munshi, N. V. PAN-INTACT enables direct isolation of lineage-specific nuclei from fibrous tissues. PLoS ONE 14, e0214677 (2019).Article  CAS  PubMed  PubMed Central  Google Scholar Yucel, N. et al. Cardiac endothelial cells maintain open chromatin and expression of cardiomyocyte myofibrillar genes. eLife 9, e55730 (2020).Article  CAS  PubMed  PubMed Central  Google Scholar Zhang, M., Lui, K. O. & Zhou, B. Application of new lineage tracing techniques in cardiovascular development and physiology. Circ. Res. 134, 445–458 (2024).Article  CAS  PubMed  Google Scholar Yoshida, Y. & Yamanaka, S. Induced pluripotent stem cells 10 years later: for cardiac applications. Circ. Res. 120, 1958–1968 (2017).Article  CAS  PubMed  Google Scholar Buikema, J. W. & Wu, S. M. Untangling the biology of genetic cardiomyopathies with pluripotent stem cell disease models. Curr. Cardiol. Rep. 19, 30 (2017).Article  PubMed  Google Scholar Brandao, K. O., Tabel, V. A., Atsma, D. E., Mummery, C. L. & Davis, R. P. Human pluripotent stem cell models of cardiac disease: from mechanisms to therapies. Dis. Model. Mech. 10, 1039–1059 (2017).Article  CAS  PubMed  PubMed Central  Google Scholar Morton, S. U., Quiat, D., Seidman, J. G. & Seidman, C. E. Genomic frontiers in congenital heart disease. Nat. Rev. Cardiol. 19, 26–42 (2022).Article  PubMed  Google Scholar Mills, R. J. & Hudson, J. E. Bioengineering adult human heart tissue: how close are we? APL Bioeng. 3, 010901 (2019).Article  PubMed  PubMed Central  Google Scholar Cho, S., Discher, D. E., Leong, K. W., Vunjak-Novakovic, G. & Wu, J. C. Challenges and opportunities for the next generation of cardiovascular tissue engineering. Nat. Methods https://doi.org/10.1038/s41592-022-01591-3 (2022).Article  PubMed  PubMed Central  Google Scholar