Li, J. & Mooney, D. J. Designing hydrogels for controlled drug delivery. Nat. Rev. Mater. 1, 16071 (2016).Article Google Scholar Blache, U. et al. Engineered hydrogels for mechanobiology. Nat. Rev. Methods Primers 2, 98 (2022).Article Google Scholar Yousefpour, P., Ni, K. & Irvine, D. J. Targeted modulation of immune cells and tissues using engineered biomaterials. Nat. Rev. Bioeng. 1, 107–124 (2023).Article Google Scholar Madl, C. M. & Heilshorn, S. C. Engineering hydrogel microenvironments to recapitulate the stem cell niche. Annu. Rev. Biomed. Eng. 20, 21–47 (2018).Article Google Scholar Levin, A. et al. Biomimetic peptide self-assembly for functional materials. Nat. Rev. Chem. 4, 615–634 (2020).Article Google Scholar Yorke, S. K. et al. Design and sustainability of polypeptide material systems. Nat. Rev. Mater. 10, 750–768 (2025).Article Google Scholar Sundaram, S. et al. Sacrificial capillary pumps to engineer multiscalar biological forms. Nature 636, 361–367 (2024).Article Google Scholar Lavrador, P., Moura, B. S., Almeida-Pinto, J., Gaspar, V. M. & Mano, J. F. Engineered nascent living human tissues with unit programmability. Nat. Mater. 24, 143–154 (2025).Article Google Scholar Vargo, E. et al. Functional composites by programming entropy-driven nanosheet growth. Nature 623, 724–731 (2023).Article Google Scholar Muir, V. G. & Burdick, J. A. Chemically modified biopolymers for the formation of biomedical hydrogels. Chem. Rev. 121, 10908–10949 (2020).Article Google Scholar Daly, A. C., Riley, L., Segura, T. & Burdick, J. A. Hydrogel microparticles for biomedical applications. Nat. Rev. Mater. 5, 20–43 (2020).Article Google Scholar Daly, A. C. Granular hydrogels in biofabrication: recent advances and future perspectives. Adv. Healthc. Mater. 13, 2301388 (2024).Article Google Scholar Xu, Y. et al. Recent advances in microgels: from biomolecules to functionality. Small 18, 2200180 (2022).Article Google Scholar Moragues, T. et al. Droplet-based microfluidics. Nat. Rev. Methods Primers 3, 32 (2023).Article Google Scholar Lou, J. & Mooney, D. J. Chemical strategies to engineer hydrogels for cell culture. Nat. Rev. Chem. 6, 726–744 (2022).Article Google Scholar Mohamed, M. G. et al. An integrated microfluidic flow-focusing platform for on-chip fabrication and filtration of cell-laden microgels. Lab Chip 19, 1621–1632 (2019).Article Google Scholar Ou, Y. et al. Bioprinting microporous functional living materials from protein-based core-shell microgels. Nat. Commun. 14, 322 (2023). This work highlights the use of droplet microfluidics to control cellular microenvironments in 3D-bioprinted functional living materials.Article Google Scholar Mao, A. S. et al. Deterministic encapsulation of single cells in thin tunable microgels for niche modelling and therapeutic delivery. Nat. Mater. 16, 236–243 (2017).Article Google Scholar Highley, C. B., Song, K. H., Daly, A. C. & Burdick, J. A. Jammed microgel inks for 3D printing applications. Adv. Sci. 6, 1801076 (2019). The seminal work of using jammed microgels as a generalizable 3D printing ink.Article Google Scholar Griffin, D. R., Weaver, W. M., Scumpia, P. O., Di Carlo, D. & Segura, T. Accelerated wound healing by injectable microporous gel scaffolds assembled from annealed building blocks. Nat. Mater. 14, 737–744 (2015). The original work of microporous annealed particles for tissue engineering.Article Google Scholar Li, X. et al. Smart fluorosurfactant-assisted microfluidics powered on-demand generation and retrieval of cell-laden microgels. Adv. Mater. Interfaces 12, 2500178 (2025).Article Google Scholar Utada, A. S. et al. Monodisperse double emulsions generated from a microcapillary device. Science 308, 537–541 (2005).Article Google Scholar Li, J., Wang, Y., Cai, L., Shang, L. & Zhao, Y. High-throughput generation of microgels in centrifugal multi-channel rotating system. Chem. Eng. J. 427, 130750 (2022).Article Google Scholar de Rutte, J. M., Koh, J. & Di Carlo, D. Scalable high-throughput production of modular microgels for in situ assembly of microporous tissue scaffolds. Adv. Funct. Mater. 29, 1900071 (2019).Article Google Scholar Baroud, C. N., Gallaire, F. & Dangla, R. Dynamics of microfluidic droplets. Lab Chip 10, 2032–2045 (2010).Article Google Scholar Gregoire, J. M., Zhou, L. & Haber, J. A. Combinatorial synthesis for AI-driven materials discovery. Nat. Synth. 2, 493–504 (2023).Article Google Scholar Caliari, S. R. & Burdick, J. A. A practical guide to hydrogels for cell culture. Nat. Methods 13, 405–414 (2016).Article Google Scholar Zhang, Y. S. et al. 3D extrusion bioprinting. Nat. Rev. Methods Primers 1, 75 (2021).Article Google Scholar Jiao, D., Zhu, Q. L., Li, C. Y., Zheng, Q. & Wu, Z. L. Programmable morphing hydrogels for soft actuators and robots: from structure designs to active functions. Acc. Chem. Res. 55, 1533–1545 (2022).Article Google Scholar Rommel, D. et al. Functionalized microgel rods interlinked into soft macroporous structures for 3D cell culture. Adv. Sci. 9, 2103554 (2022).Article Google Scholar Xu, Y. et al. Liquid–liquid phase-separated systems from reversible gel–sol transition of protein microgels. Adv. Mater. 33, 2008670 (2021).Article Google Scholar Shah, R. K. et al. Designer emulsions using microfluidics. Mater. Today 11, 18–27 (2008).Article Google Scholar Wang, H. et al. One-step generation of core–shell gelatin methacrylate (GelMA) microgels using a droplet microfluidic system. Adv. Mater. Technol. 4, 1800632 (2019).Article Google Scholar Wang, H. et al. Flexible generation of multi-aqueous core hydrogel capsules using microfluidic aqueous two-phase system. Adv. Mater. Technol. 5, 2000045 (2020).Article Google Scholar Xu, Y. et al. Deformable and robust core–shell protein microcapsules templated by liquid–liquid phase-separated microdroplets. Adv. Mater. Interfaces 8, 2101071 (2021).Article Google Scholar Udani, S. et al. Associating growth factor secretions and transcriptomes of single cells in nanovials using SEC-seq. Nat. Nanotechnol. 19, 354–363 (2024).Article Google Scholar Chen, Q. et al. Controlled assembly of heterotypic cells in a core–shell scaffold: organ in a droplet. Lab Chip 16, 1346–1349 (2016).Article Google Scholar Zhang, L. et al. Microfluidic templated multicompartment microgels for 3D encapsulation and pairing of single cells. Small 14, 1702955 (2018).Article Google Scholar Bouhlel, W., Kui, J., Bibette, J. & Bremond, N. Encapsulation of cells in a collagen matrix surrounded by an alginate hydrogel shell for 3D cell culture. ACS Biomater. Sci. Eng. 8, 2700–2708 (2022).Article Google Scholar Hu, Y. et al. Shape controllable microgel particles prepared by microfluidic combining external ionic crosslinking. Biomicrofluidics 6, 26502–265029 (2012).Article Google Scholar Zhan, Z. et al. Hierarchically porous microgels with interior spiral canals for high-efficiency delivery of stem cells in wound healing. Small 21, 2405648 (2025).Article Google Scholar Xu, Y. et al. Microfluidic templating of spatially inhomogeneous protein microgels. Small 16, 2000432 (2020).Article Google Scholar Abate, A. R., Chen, C.-H., Agresti, J. J. & Weitz, D. A. Beating Poisson encapsulation statistics using close-packed ordering. Lab Chip 9, 2628–2631 (2009).Article Google Scholar Martel, J. M. & Toner, M. Inertial focusing in microfluidics. Annu. Rev. Biomed. Eng. 16, 371–396 (2014).Article Google Scholar Ou, Y. et al. Droplet microfluidics on analysis of pathogenic microbes for wastewater-based epidemiology. Trends Analyt. Chem. 143, 116333 (2021).Article Google Scholar Arter, W. E. et al. Biomolecular condensate phase diagrams with a combinatorial microdroplet platform. Nat. Commun. 13, 7845 (2022). This work highlights the capability of droplet microfluidics for combinatorial biomolecular assays.Article Google Scholar Klein, A. M. et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161, 1187–1201 (2015).Article Google Scholar Lan, F., Demaree, B., Ahmed, N. & Abate, A. R. Single-cell genome sequencing at ultra-high-throughput with microfluidic droplet barcoding. Nat. Biotechnol. 35, 640–646 (2017). The first work to demonstrate the use of microgels for single-cell genomic sequencing.Article Google Scholar Lan, F. et al. Massively parallel single-cell sequencing of diverse microbial populations. Nat. methods 21, 228–235 (2024).Article Google Scholar Leonaviciene, G., Leonavicius, K., Meskys, R. & Mazutis, L. Multi-step processing of single cells using semi-permeable capsules. Lab Chip 20, 4052–4062 (2020).Article Google Scholar Li, L. et al. Permeability-engineered compartmentalization enables in vitro reconstitution of sustained synthetic biology systems. Adv. Sci. 9, 2203652 (2022).Article Google Scholar Tang, T.-C. et al. Hydrogel-based biocontainment of bacteria for continuous sensing and computation. Nat. Chem. Biol. 17, 724–731 (2021).Article Google Scholar Zhao, S. et al. A new design for living cell-based biosensors: microgels with a selectively permeable shell that can harbor bacterial species. Sens. Actuators B Chem. 334, 129648 (2021).Article Google Scholar Wen, H. et al. Microfluidic encapsulation of supramolecular optical chemosensors for high-throughput analysis and screening. Sens. Actuators B Chem. 355, 131302 (2022).Article Google Scholar van Zee, M. et al. High-throughput selection of cells based on accumulated growth and division using PicoShell particles. Proc. Natl Acad. Sci. USA 119, e2109430119 (2022).Article Google Scholar Napiorkowska, M., Pestalozzi, L., Panke, S., Held, M. & Schmitt, S. High-throughput optimization of recombinant protein production in microfluidic gel beads. Small 17, 2005523 (2021).Article Google Scholar Ochoa, A., Gastélum, G., Rocha, J. & Olguin, L. F. High-throughput bacterial co-encapsulation in microfluidic gel beads for discovery of antibiotic-producing strains. Analyst 148, 5762–5774 (2023).Article Google Scholar Chen, J. et al. Single cell microgels for high-throughput magnetic sorting and sequencing of antigen-specific antibodies. Adv. Funct. Mater. 34, 2314560 (2024).Article Google Scholar Nakagawa, Y. et al. Are droplets really suitable for single-cell analysis? A case study on yeast in droplets. Lab Chip 21, 3793–3803 (2021).Article Google Scholar Liu, L., Dalal, C. K., Heineike, B. M. & Abate, A. R. High throughput gene expression profiling of yeast colonies with microgel-culture Drop-seq. Lab Chip 19, 1838–1849 (2019).Article Google Scholar Adu-Berchie, K. et al. Generation of functionally distinct T-cell populations by altering the viscoelasticity of their extracellular matrix. Nat. Biomed. Eng. 7, 1374–1391 (2023).Article Google Scholar Mittelheisser, V. et al. Evidence and therapeutic implications of biomechanically regulated immunosurveillance in cancer and other diseases. Nat. Nanotechnol. 19, 281–297 (2024).Article Google Scholar Zhao, Z. et al. Organoids. Nat. Rev. Methods Primers 2, 94 (2022).Article Google Scholar Kim, S.-J., Kim, E. M., Yamamoto, M., Park, H. & Shin, H. Engineering multi-cellular spheroids for tissue engineering and regenerative medicine. Adv. Healthc. Mater. 9, 2000608 (2020).Article Google Scholar Sart, S., Ronteix, G., Jain, S., Amselem, G. & Baroud, C. N. Cell culture in microfluidic droplets. Chem. Rev. 122, 7061–7096 (2022).Article Google Scholar Tevis, K. M., Colson, Y. L. & Grinstaff, M. W. Embedded spheroids as models of the cancer microenvironment. Adv. Biosyst. 1, 1700083 (2017).Article Google Scholar Toda, S., Blauch, L. R., Tang, S. K., Morsut, L. & Lim, W. A. Programming self-organizing multicellular structures with synthetic cell-cell signaling. Science 361, 156–162 (2018).Article Google Scholar Baker, B. M. & Chen, C. S. Deconstructing the third dimension–how 3D culture microenvironments alter cellular cues. J. Cell Sci. 125, 3015–3024 (2012). This review provides a mechanistic and comprehensive introduction to the fundamentals of 3D cell culture.Google Scholar Raghavan, S. et al. Decoupling diffusional from dimensional control of signaling in 3D culture reveals a role for myosin in tubulogenesis. J. Cell Sci. 123, 2877–2883 (2010).Article Google Scholar Wang, H. et al. Bioinspired one cell culture isolates highly tumorigenic and metastatic cancer stem cells capable of multilineage differentiation. Adv. Sci. 7, 2000259 (2020).Article Google Scholar Fang, G. et al. Mammary tumor organoid culture in non-adhesive alginate for luminal mechanics and high-throughput drug screening. Adv. Sci. 8, 2102418 (2021).Article Google Scholar Özkale, B. et al. Actuated 3D microgels for single cell mechanobiology. Lab Chip 22, 1962–1970 (2022).Article Google Scholar Zhu, H. et al. Core–shell spheroid-laden microgels crosslinked under biocompatible conditions for probing cancer–stromal communication. Adv. NanoBiomed Res. 2, 2200138 (2022).Article Google Scholar Kamperman, T. et al. Steering stem cell fate within 3D living composite tissues using stimuli-responsive cell-adhesive micromaterials. Adv. Sci. 10, 2205487 (2023).Article Google Scholar Kohler, T. N. et al. Plakoglobin is a mechanoresponsive regulator of naive pluripotency. Nat. Commun. 14, 4022 (2023).Article Google Scholar Cordero-Espinoza, L. et al. Dynamic cell contacts between periportal mesenchyme and ductal epithelium act as a rheostat for liver cell proliferation. Cell Stem Cell 28, 1907–1921 (2021).Article Google Scholar Schindler, M. et al. Agarose microgel culture delineates lumenogenesis in naive and primed human pluripotent stem cells. Stem Cell Rep. 16, 1347–1362 (2021).Article Google Scholar Munger, C. et al. Microgel culture and spatial identity mapping elucidate the signalling requirements for primate epiblast and amnion formation. Development 149, dev200263 (2022).Article Google Scholar Lee, D. & Cha, C. Cell subtype-dependent formation of breast tumor spheroids and their variable responses to chemotherapeutics within microfluidics-generated 3D microgels with tunable mechanics. Mater. Sci. Engineering C. 112, 110932 (2020).Article Google Scholar Saupe, M. et al. Droplet-based cell viability assay for analysis of spheroid formation, proliferation and high-resolution IC50 profiling. Lab Chip 25, 6138–6156 (2025).Article Google Scholar Sabhachandani, P. et al. Microfluidic assembly of hydrogel-based immunogenic tumor spheroids for evaluation of anticancer therapies and biomarker release. J. Controlled Rel. 295, 21–30 (2019).Article Google Scholar Ronteix, G. et al. High resolution microfluidic assay and probabilistic modeling reveal cooperation between T cells in tumor killing. Nat. Commun. 13, 3111 (2022).Article Google Scholar Sun, Q. et al. Microfluidic formation of coculture tumor spheroids with stromal cells as a novel 3D tumor model for drug testing. ACS Biomater. Sci. Eng. 4, 4425–4433 (2018).Article Google Scholar Araújo-Gomes, N. et al. Microfluidic generation of thin-shelled polyethylene glycol-tyramine microgels for non-invasive delivery of immunoprotected β-cells. Adv. Healthc. Mater. 13, 2301552 (2024).Article Google Scholar van Loo, B., Schot, M., Gurian, M., Kamperman, T. & Leijten, J. Single-step biofabrication of in situ spheroid-forming compartmentalized hydrogel for clinical-sized cartilage tissue formation. Adv. Healthc. Mater. 13, 2300095 (2024).Article Google Scholar Liu, H. et al. A droplet microfluidic system to fabricate hybrid capsules enabling stem cell organoid engineering. Adv. Sci. 7, 1903739 (2020).Article Google Scholar Song, T., Zhang, H., Luo, Z., Shang, L. & Zhao, Y. Primary human pancreatic cancer cells cultivation in microfluidic hydrogel microcapsules for drug evaluation. Adv. Sci. 10, 2206004 (2023).Article Google Scholar Sart, S., Tomasi, R. F.-X., Amselem, G. & Baroud, C. N. Multiscale cytometry and regulation of 3D cell cultures on a chip. Nat. Commun. 8, 469 (2017).Article Google Scholar Mulas, C. et al. Microfluidic platform for 3D cell culture with live imaging and clone retrieval. Lab Chip 20, 2580–2591 (2020).Article Google Scholar de Hoyos-Vega, J. M. et al. Microfluidic 3D hepatic cultures integrated with a droplet-based bioanalysis unit. Biosens. Bioelectron. 248, 115896 (2024).Article Google Scholar Kehe, J. et al. Massively parallel screening of synthetic microbial communities. Proc. Natl Acad. Sci. USA 116, 12804–12809 (2019).Article Google Scholar Tomasi, R. F.-X., Sart, S., Champetier, T. & Baroud, C. N. Individual control and quantification of 3D spheroids in a high-density microfluidic droplet array. Cell Rep. 31, 107670 (2020).Article Google Scholar Saint-Sardos, A. et al. High-throughput measurements of intra-cellular and secreted cytokine from single spheroids using anchored microfluidic droplets. Small 16, 2002303 (2020).Article Google Scholar Bonnet, V. et al. Cancer-on-a-chip model shows that the adenomatous polyposis coli mutation impairs T cell engagement and killing of cancer spheroids. Proc. Natl Acad. Sci. USA 121, e2316500121 (2024).Article Google Scholar Zhong, R. et al. Hydrogels for RNA delivery. Nat. Mater. 22, 818–831 (2023).Article Google Scholar Xu, S. et al. Stimuli-responsive hydrogels composed of modified cellulose nanocrystal and gelatin with oriented channels for guiding axonal myelination. Carbohydr. Polym. 356, 123402 (2025).Article Google Scholar Harimoto, T., Jung, W.-H. & Mooney, D. J. Delivering living medicines with biomaterials. Nat. Rev. Mater. 10, 191–210 (2025).Article Google Scholar Toprakcioglu, Z., Challa, P. K., Morse, D. B. & Knowles, T. Attoliter protein nanogels from droplet nanofluidics for intracellular delivery. Sci. Adv. 6, eaay7952 (2020).Article Google Scholar Saucedo-Espinosa, M. A., Breitfeld, M. & Dittrich, P. S. Continuous electroformation of gold nanoparticles in nanoliter droplet reactors. Angew. Chem. Int. Ed. 62, e202212459 (2023).Article Google Scholar Zhang, Q. et al. Formation of protein nanoparticles in microdroplet flow reactors. ACS nano 17, 11335–11344 (2023).Article Google Scholar Headen, D. M. et al. Local immunomodulation with Fas ligand-engineered biomaterials achieves allogeneic islet graft acceptance. Nat. Mater. 17, 732–739 (2018).Article Google Scholar Lei, J. et al. FasL microgels induce immune acceptance of islet allografts in nonhuman primates. Sci. Adv. 8, eabm9881 (2022).Article Google Scholar Pan, S. et al. Multifunctional injectable hydrogel microparticles loaded with miR-29a abundant BMSCs derived exosomes enhanced bone regeneration by regulating osteogenesis and angiogenesis. Small 20, 2306721 (2024).Article Google Scholar Yin, Z. et al. Injectable hyperbranched PEG crosslinked hyaluronan hydrogel microparticles containing mir-99a-3p modified subcutaneous ADSCs-derived exosomes was beneficial for long-term treatment of osteoarthritis. Mater. Today Bio 23, 100813 (2023).Article Google Scholar Sun, J. et al. Mesenchymal stem cell-laden composite β cell porous microgel for diabetes treatment. Adv. Funct. Mater. 33, 2211897 (2023).Article Google Scholar Yang, C. et al. Adhesive composite microspheres with dual antibacterial strategies for infected wound healing. Small 19, 2301092 (2023).Article Google Scholar Johnbosco, C. et al. Microencapsulated stem cells reduce cartilage damage in a material dependent manner following minimally invasive intra-articular injection in an OA rat model. Mater. Today Bio 22, 100791 (2023).Article Google Scholar Fang, Z., Yang, X. & Shang, L. Microfluidic-derived montmorillonite composite microparticles for oral codelivery of probiotic biofilm and postbiotics. Sci. Adv. 11, eadt2131 (2025).Article Google Scholar Wang, R. et al. Poly-γ-glutamic acid microgel-encapsulated probiotics with gastric acid resistance and smart inflammatory factor targeted delivery performance to ameliorate colitis. Adv. Funct. Mater. 32, 2113034 (2022).Article Google Scholar Chen, X. et al. Suspended bubble microcapsule delivery systems from droplet microfluidic technology for the local treatment of gastric cancer. Chem. Eng. J. 458, 141428 (2023).Article Google Scholar Lin, X. et al. Light-activated extracellular matrix microcarriers with engineered MSCs loading for autoimmune psoriasis treatment. Chem. Eng. J. 470, 144118 (2023).Article Google Scholar Griffin, D. R. et al. Activating an adaptive immune response from a hydrogel scaffold imparts regenerative wound healing. Nat. Mater. 20, 560–569 (2021).Article Google Scholar Cha, C. et al. Microfluidics-assisted fabrication of gelatin-silica core–shell microgels for injectable tissue constructs. Biomacromolecules 15, 283–290 (2014).Article Google Scholar Yang, C., Ding, X., Yang, C., Shang, L. & Zhao, Y. Marine polymers-alginate/chitosan composited microcapsules for wound healing. Chem. Eng. J. 456, 140886 (2023).Article Google Scholar Yang, L., Yang, W., Xu, W., Zhao, Y. & Shang, L. Bio-inspired Janus microcarriers with sequential actives release for bone regeneration. Chem. Eng. J. 476, 146797 (2023).Article Google Scholar Darling, N. J., Sideris, E., Hamada, N., Carmichael, S. T. & Segura, T. Injectable and spatially patterned microporous annealed particle (MAP) hydrogels for tissue repair applications. Adv. Sci. 5, 1801046 (2018).Article Google Scholar Wilson, K. L. et al. SDF-1 bound heparin nanoparticles recruit progenitor cells for their differentiation and promotion of angiogenesis after stroke. Adv. Healthc. Mater. 13, 2302081 (2024).Article Google Scholar Fang, J. et al. Injectable drug-releasing microporous annealed particle scaffolds for treating myocardial infarction. Adv. Funct. Mater. 30, 2004307 (2020).Article Google Scholar Caprio, N. D., Davidson, M. D., Daly, A. C. & Burdick, J. A. Injectable MSC spheroid and microgel granular composites for engineering tissue. Adv. Mater. 36, 2312226 (2024).Article Google Scholar Kent, R. N. III et al. Physical and soluble cues enhance tendon progenitor cell invasion into injectable synthetic hydrogels. Adv. Funct. Mater. 32, 2207556 (2022).Article Google Scholar Vegas, A. J. et al. Long-term glycemic control using polymer-encapsulated human stem cell-derived beta cells in immune-competent mice. Nat. Med. 22, 306–311 (2016).Article Google Scholar An, C. et al. Microfluidic-templated cell-laden microgels fabricated using phototriggered imine-crosslinking as injectable and adaptable granular gels for bone regeneration. Acta Biomaterialia 157, 91–107 (2023).Article Google Scholar Feng, Q. et al. Injection and self-assembly of bioinspired stem cell-laden gelatin/hyaluronic acid hybrid microgels promote cartilage repair in vivo. Adv. Funct. Mater. 29, 1906690 (2019).Article Google Scholar Li, F. et al. Microencapsulation improves chondrogenesis in vitro and cartilaginous matrix stability in vivo compared to bulk encapsulation. Biomater. Sci. 8, 1711–1725 (2020).Article Google Scholar Wong, S. W. et al. Inhibition of aberrant tissue remodelling by mesenchymal stromal cells singly coated with soft gels presenting defined chemomechanical cues. Nat. Biomed. Eng. 6, 54–66 (2022).Article Google Scholar Liu, A. J. & Nagel, S. R. Jamming and Rheology: Constrained Dynamics on Microscopic and Macroscopic Scales (CRC Press, 2001).Menut, P., Seiffert, S., Sprakel, J. & Weitz, D. A. Does size matter? Elasticity of compressed suspensions of colloidal- and granular-scale microgels. Soft Matter 8, 156–164 (2012).Article Google Scholar Emiroglu, D. B. et al. Building block properties govern granular hydrogel mechanics through contact deformations. Sci. Adv. 8, eadd8570 (2022).Article Google Scholar James, N. M., Han, E., de la Cruz, R. A. L., Jureller, J. & Jaeger, H. M. Interparticle hydrogen bonding can elicit shear jamming in dense suspensions. Nat. Mater. 17, 965–970 (2018).Article Google Scholar Richards, J. A., O’Neill, R. E. & Poon, W. C. Turning a yield-stress calcite suspension into a shear-thickening one by tuning inter-particle friction. Rheologica Acta 60, 97–106 (2021).Article Google Scholar Riley, L., Schirmer, L. & Segura, T. Granular hydrogels: emergent properties of jammed hydrogel microparticles and their applications in tissue repair and regeneration. Curr. Opin. Biotechnol. 60, 1–8 (2019).Article Google Scholar Lee, H.-P. et al. Dynamically cross-linked granular hydrogels for 3D printing and therapeutic delivery. ACS Appl. Bio Mater. 6, 3683–3695 (2023).Article Google Scholar Muir, V. G. et al. Sticking together: injectable granular hydrogels with increased functionality via dynamic covalent inter-particle crosslinking. Small 18, 2201115 (2022).Article Google Scholar Mealy, J. E. et al. Injectable granular hydrogels with multifunctional properties for biomedical applications. Adv. Mater. 30, 1705912 (2018).Article Google Scholar Xin, S., Dai, J., Gregory, C. A., Han, A. & Alge, D. L. Creating physicochemical gradients in modular microporous annealed particle hydrogels via a microfluidic method. Adv. Funct. Mater. 30, 1907102 (2020).Article Google Scholar Tigner, T. J. et al. Clickable granular hydrogel scaffolds for delivery of neural progenitor cells to sites of spinal cord injury. Adv. Healthc. Mater. 13, 2303912 (2024).Article Google Scholar Kuang, G., Zhang, Q., Li, W. & Zhao, Y. Biomimetic tertiary lymphoid structures with microporous annealed particle scaffolds for cancer postoperative therapy. ACS Nano 18, 9176–9186 (2024).Article Google Scholar Li, F. et al. Cartilage tissue formation through assembly of microgels containing mesenchymal stem cells. Acta Biomaterialia 77, 48–62 (2018).Article Google Scholar Zhang, J. et al. Transforming cell–drug interaction through granular hydrogel-mediated delivery of polyplex nanoparticles for enhanced safety and extended efficacy in gene therapy. ACS Appl. Mater. Interfaces 16, 39784–39795 (2024).Article Google Scholar Wu, G. et al. Improving liposome delivery with macroporous granular hydrogels synthesized through freezing-facilitated secondary crosslinking of macromonomers. Adv. Mater. Interfaces 10, 2300262 (2023).Article Google Scholar Truong, N. F. et al. Microporous annealed particle hydrogel stiffness, void space size, and adhesion properties impact cell proliferation, cell spreading, and gene transfer. Acta Biomaterialia 94, 160–172 (2019).Article Google Scholar Karimi, F. et al. Photocrosslinked silk fibroin microgel scaffolds for biomedical applications. Adv. Funct. Mater. 34, 2313354 (2024).Article Google Scholar Jaberi, A. et al. Engineering microgel packing to tailor the physical and biological properties of gelatin methacryloyl granular hydrogel scaffolds. Adv. Healthc. Mater. 13, 2402489 (2024).Article Google Scholar Lowen, J. M. et al. Multisized photoannealable microgels regulate cell spreading, aggregation, and macrophage phenotype through microporous void space. Adv. Healthc. Mater. 12, 2202239 (2023).Article Google Scholar Nerger, B. A. et al. Tuning porosity of macroporous hydrogels enables rapid rates of stress relaxation and promotes cell expansion and migration. Proc. Natl Acad. Sci. USA 121, e2410806121 (2024). This work highlights that stress relaxation of jammed microgels is tunable by packing density, and it affects cell behaviours in vitro.Article Google Scholar Krattiger, L. A. et al. Microfluidic platforms to screen granular hydrogel microenvironments for tissue regeneration. Adv. Funct. Mater. 34, 2310507 (2024).Article Google Scholar Ross, B. C. et al. Building-block size mediates microporous annealed particle hydrogel tube microenvironment following spinal cord injury. Adv. Healthc. Mater. 13, 2302498 (2024).Article Google Scholar Tanner, G. I., Schiltz, L., Narra, N., Figueiredo, M. L. & Qazi, T. H. Granular hydrogels improve myogenic invasion and repair after volumetric muscle loss. Adv. Healthc. Mater. 13, 2303576 (2024).Article Google Scholar Pfaff, B. N., Flanagan, C. C. & Griffin, D. R. Microporous annealed particle (MAP) scaffold pore size influences mesenchymal stem cell metabolism and proliferation without changing CD73, CD90, and CD105 expression over two weeks. Adv. Biol. 8, 2300482 (2024).Article Google Scholar Casella, A. et al. Conductive microgel annealed scaffolds enhance myogenic potential of myoblastic cells. Adv. Healthc. Mater. 13, 2302500 (2024).Article Google Scholar Ataie, Z. et al. Accelerating patterned vascularization using granular hydrogel scaffolds and surgical micropuncture. Small 20, 2307928 (2024).Article Google Scholar Schot, M. et al. Photoannealing of microtissues creates high-density capillary network containing living matter in a volumetric-independent manner. Adv. Mater. 36, 2308949 (2024).Article Google Scholar Liu, Y. et al. Exploring the role of spatial confinement in immune cell recruitment and regeneration of skin wounds. Adv. Mater. 35, 2304049 (2023).Article Google Scholar Liu, Y. et al. Spatial confinement modulates macrophage response in microporous annealed particle (MAP) scaffolds. Adv. Healthc. Mater. 12, 2300823 (2023).Article Google Scholar Qazi, T. H. et al. Anisotropic rod-shaped particles influence injectable granular hydrogel properties and cell invasion. Adv. Mater. 34, 2109194 (2022).Article Google Scholar Tang, R.-C., Shang, L., Scumpia, P. O. & Di Carlo, D. Injectable microporous annealed crescent-shaped (MAC) particle hydrogel scaffold for enhanced cell infiltration. Adv. Healthc. Mater. 13, 2302477 (2024).Article Google Scholar Daly, A. C., Prendergast, M. E., Hughes, A. J. & Burdick, J. A. Bioprinting for the biologist. Cell 184, 18–32 (2021).Article Google Scholar He, F. et al. 3D Printed biocatalytic living materials with dual-network reinforced bioinks. Small 18, 2104820 (2022).Article Google Scholar Xin, S. et al. Generalizing hydrogel microparticles into a new class of bioinks for extrusion bioprinting. Sci. Adv. 7, eabk3087 (2021).Article Google Scholar He, Y. et al. Research on the printability of hydrogels in 3D bioprinting. Sci. Rep. 6, 29977 (2016).Article Google Scholar Xin, S., Chimene, D., Garza, J. E., Gaharwar, A. K. & Alge, D. L. Clickable PEG hydrogel microspheres as building blocks for 3D bioprinting. Biomater. Sci. 7, 1179–1187 (2019).Article Google Scholar Zhang, J. et al. Injectable granular hydrogels as colloidal assembly microreactors for customized structural colored objects. Angew. Chem. 134, e202206339 (2022).Article Google Scholar Charlet, A., Bono, F. & Amstad, E. Mechanical reinforcement of granular hydrogels. Chem. Sci. 13, 3082–3093 (2022).Article Google Scholar Li, Y. et al. Biocatalytic living materials built by compartmentalized microorganisms in annealable granular hydrogels. Chem. Eng. J. 445, 136822 (2022).Article Google Scholar Miksch, C. E. et al. 4D printing of extrudable and degradable poly (ethylene glycol) microgel scaffolds for multidimensional cell culture. Small 18, 2200951 (2022).Article Google Scholar Deo, K. A. et al. Granular biphasic colloidal hydrogels for 3D bioprinting. Adv. Healthc. Mater. 13, 2303810 (2024).Article Google Scholar Wang, Y. et al. Advancing engineered plant living materials through tobacco BY-2 cell growth and transfection within tailored granular hydrogel scaffolds. ACS Cent. Sci. 10, 1094–1104 (2024).Article Google Scholar Seymour, A. J., Shin, S. & Heilshorn, S. C. 3D printing of microgel scaffolds with tunable void fraction to promote cell infiltration. Adv. Healthc. Mater. 10, 2100644 (2021).Article Google Scholar Zhang, H. et al. Direct 3D printed biomimetic scaffolds based on hydrogel microparticles for cell spheroid growth. Adv. Funct. Mater. 30, 1910573 (2020).Article Google Scholar Seymour, A. J., Kilian, D., Navarro, R. S., Hull, S. M. & Heilshorn, S. C. 3D printing microporous scaffolds from modular bioinks containing sacrificial, cell-encapsulating microgels. Biomater. Sci. 11, 7598–7615 (2023).Article Google Scholar Cao, Y. et al. Bead-jet printing enabled sparse mesenchymal stem cell patterning augments skeletal muscle and hair follicle regeneration. Nat. Commun. 13, 7463 (2022).Article Google Scholar Zhang, Y., Tan, C. M., Toepfer, C. N., Lu, X. & Bayley, H. Microscale droplet assembly enables biocompatible multifunctional modular iontronics. Science 386, 1024–1030 (2024).Article Google Scholar Li, X. et al. Inkjet bioprinting of biomaterials. Chem. Rev. 120, 10793–10833 (2020).Article Google Scholar Kim, H. H. et al. Parallelization of microfluidic droplet junctions for ultraviscous fluids. Small 18, 2205001 (2022).Article Google Scholar van Loo, B. et al. Mass production of uminogenic human embryoid bodies and functional cardiospheres using in-air-generated microcapsules. Nat. Commun. 14, 6685 (2023).Article Google Scholar Song, Y., Sauret, A. & Shum, H. C. All-aqueous multiphase microfluidics. Biomicrofluidics 7, 61301 (2013).Article Google Scholar Wyss, H. M., Franke, T., Mele, E. & Weitz, D. A. Capillary micromechanics: measuring the elasticity of microscopic soft objects. Soft Matter 6, 4550–4555 (2010).Article Google Scholar Xu, Y. et al. Micromechanics of soft materials using microfluidics. MRS Bull. 47, 119–126 (2022).Article Google Scholar Garcia, R. Nanomechanical mapping of soft materials with the atomic force microscope: methods, theory and applications. Chem. Soc. Rev. 49, 5850–5884 (2020).Article Google Scholar Squires, T. M. & Mason, T. G. Fluid mechanics of microrheology. Annu. Rev. Fluid Mech. 42, 413–438 (2010).Article Google Scholar Yao, A., Tassieri, M., Padgett, M. & Cooper, J. Microrheology with optical tweezers. Lab Chip 9, 2568–2575 (2009).Article Google Scholar Nakajima, K. et al. Mechanical profiling of biopolymer condensates through acoustic trapping. Preprint at bioRxiv https://doi.org/10.1101/2024.09.16.613217 (2024).Gerum, R. et al. Viscoelastic properties of suspended cells measured with shear flow deformation cytometry. eLife 11, e78823 (2022).Article Google Scholar Allazetta, S., Negro, A. & Lutolf, M. Microfluidic programming of compositional hydrogel landscapes. Macromol. Rapid Commun. 38, 1700255 (2017).Article Google Scholar Zheludev, N. I. & Kivshar, Y. S. From metamaterials to metadevices. Nat. Mater. 11, 917–924 (2012).Article Google Scholar Meng, Z., Yan, H. & Wang, Y. Granular metamaterials with dynamic bond reconfiguration. Sci. Adv. 10, eadq7933 (2024).Article Google Scholar Shen, X. et al. Achieving adjustable elasticity with non-affine to affine transition. Nat. Mater. 20, 1635–1642 (2021).Article Google Scholar Djellouli, A. et al. Shell buckling for programmable metafluids. Nature 628, 545–550 (2024).Article Google Scholar Riley, L., Cheng, P. & Segura, T. Identification and analysis of 3D pores in packed particulate materials. Nat. Computational Sci. 3, 975–992 (2023).Article Google Scholar Cubuk, E. D. et al. Structure-property relationships from universal signatures of plasticity in disordered solids. Science 358, 1033–1037 (2017). This work demonstrates a machine learning approach to study granular materials and uncovers striking similarity among a wide range of disordered solid systems.Article Google Scholar Moroni, L. et al. Biofabrication strategies for 3D in vitro models and regenerative medicine. Nat. Rev. Mater. 3, 21–37 (2018).Article Google Scholar Blatchley, M. R. & Anseth, K. S. Middle-out methods for spatiotemporal tissue engineering of organoids. Nat. Rev. Bioeng. 1, 329–345 (2023).Article Google Scholar Huang, M. S., Christakopoulos, F., Roth, J. G. & Heilshorn, S. C. Organoid bioprinting: from cells to functional tissues. Nat. Rev. Bioeng. 3, 126–142 (2025).Article Google Scholar Ho, D. L. et al. Large-scale production of wholly cellular bioinks via the optimization of human induced pluripotent stem cell aggregate culture in automated bioreactors. Adv. Healthc. Mater. 11, 2201138 (2022).Article Google Scholar Daly, A. C., Davidson, M. D. & Burdick, J. A. 3D bioprinting of high cell-density heterogeneous tissue models through spheroid fusion within self-healing hydrogels. Nat. Commun. 12, 753 (2021).Article Google Scholar Fang, Y. et al. Expanding embedded 3D bioprinting capability for engineering complex organs with freeform vascular networks. Adv. Mater. 35, 2205082 (2023).Article Google Scholar Marcotulli, M. et al. Microfluidic 3D printing of emulsion ink for engineering porous functionally graded materials. Adv. Mater. Technol. 8, 2201244 (2023).Article Google Scholar Hull, S. M. et al. 3D bioprinting of dynamic hydrogel bioinks enabled by small molecule modulators. Sci. Adv. 9, eade7880 (2023).Article Google Scholar Chaudhuri, O., Cooper-White, J., Janmey, P. A., Mooney, D. J. & Shenoy, V. B. et al. Effects of extracellular matrix viscoelasticity on cellular behaviour. Nature 584, 535–546 (2020).Article Google Scholar Skylar-Scott, M. A. et al. Biomanufacturing of organ-specific tissues with high cellular density and embedded vascular channels. Sci. Adv. 5, eaaw2459 (2019). A pioneering work using organoids as a printing bath to construct tissue-level cell density in biofabricated structures.Article Google Scholar You, S. et al. High cell density and high-resolution 3D bioprinting for fabricating vascularized tissues. Sci. Adv. 9, eade7923 (2023).Article Google Scholar