Incorporating human mobility to enhance epidemic response and estimate real-time reproduction numbers

Wait 5 sec.

by Mousumi Roy, Hannah E. Clapham, Swapnil MishraHuman mobility plays a critical role in the transmission dynamics of infectious diseases, influencing both their spread and the effectiveness of control measures. In the process of quantifying the real-time situation of an epidemic, the instantaneous reproduction number Rt appears to be one of the useful metrics widely used by public health researchers, officials, and policy makers. Since individuals can contract infections both within their region of origin and in other regions they visit, ignoring human mobility in the estimation process overlooks its impact on transmission dynamics and can lead to biased estimates of Rt, potentially misrepresenting the true epidemic situation. Our study explicitly integrates human mobility into a renewal-equation based disease transmission model to capture the mobility-driven effect on transmission. By incorporating pathogen-specific generation-time distribution, observational delay, the framework is epidemiologically informed and flexible to a wide range of diseases. We primarily validate the approach using simulated data, and demonstrate the limitations of estimating Rt without considering mobility. We then apply it to two real-world mobility settings using SARS-CoV-2 mortality data: the regions of England and the LTLAs of North East region of England, and uncover the mobility driven effect on transmission at different spatial resolutions. This framework uses non-identifiable and widely accessible publicly available datasets, demonstrating its practical applicability and supporting better-informed and more targeted public health measures.