Ashburner, M. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29 (2000).Article Google Scholar Baeshen, N. A. et al. Cell factories for insulin production. Microb. Cell Fact. 13, 141 (2014).Article Google Scholar Sterner, R. C. & Sterner, R. M. CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J. 11, 69 (2021).Article MathSciNet Google Scholar Hutchison, C. A. et al. Design and synthesis of a minimal bacterial genome. Science 351, aad6253 (2016).Article Google Scholar Hirschi, S., Ward, T. R., Meier, W. P., Müller, D. J. & Fotiadis, D. Synthetic biology: bottom-up assembly of molecular systems. Chem. Rev. 122, 16294–16328 (2022).Article Google Scholar Schwille, P. Bottom-up synthetic biology: engineering in a tinkerer’s world. Science 333, 1252–1254 (2011).Article Google Scholar Listov, D., Goverde, C. A., Correia, B. E. & Fleishman, S. J. Opportunities and challenges in design and optimization of protein function. Nat. Rev. Mol. Cell Biol. 25, 639–653 (2024).Article Google Scholar Kortemme, T. De novo protein design—from new structures to programmable functions. Cell 187, 526–544 (2024).Article Google Scholar Notin, P., Rollins, N., Gal, Y., Sander, C. & Marks, D. Machine learning for functional protein design. Nat. Biotechnol. 42, 216–228 (2024).Article Google Scholar Wittmann, B. J., Johnston, K. E., Wu, Z. & Arnold, F. H. Advances in machine learning for directed evolution. Curr. Opin. Struct. Biol. 69, 11–18 (2021).Article Google Scholar Chu, A. E., Lu, T. & Huang, P. S. Sparks of function by de novo protein design. Nat. Biotechnol. 42, 203–215 (2024).Article Google Scholar Lu, H. et al. Machine learning-aided engineering of hydrolases for PET depolymerization. Nature 604, 662–667 (2022).Article Google Scholar Jiang, K. et al. Rapid in silico directed evolution by a protein language model with EVOLVEpro. Science 387, eadr6006 (2025).Article Google Scholar Gainza, P. et al. De novo design of protein interactions with learned surface fingerprints. Nature 617, 176–184 (2023).Article Google Scholar Watson, J. L. et al. De novo design of protein structure and function with RFdiffusion. Nature 620, 1089–1100 (2023).Article Google Scholar Pacesa, M. et al. BindCraft: one-shot design of functional protein binders. Preprint at bioRxiv https://doi.org/10.1101/2024.09.30.615802 (2024).Huddy, T. F. et al. Blueprinting extendable nanomaterials with standardized protein blocks. Nature 627, 898–904 (2024).Article Google Scholar Pillai, A. et al. De novo design of allosterically switchable protein assemblies. Nature 632, 911–920 (2024).Article Google Scholar Huang, B. et al. Designed endocytosis-inducing proteins degrade targets and amplify signals. Nature 638, 796–804 (2025).Article Google Scholar Edman, N. I. et al. Modulation of FGF pathway signaling and vascular differentiation using designed oligomeric assemblies. Cell 187, 3726–3740.e43 (2024).Article Google Scholar Piraner, D. I. et al. Engineered receptors for soluble cellular communication and disease sensing. Nature 638, 805–813 (2025).Article Google Scholar Rideau, E., Dimova, R., Schwille, P., Wurm, F. R. & Landfester, K. Liposomes and polymersomes: a comparative review towards cell mimicking. Chem. Soc. Rev. 47, 8572–8610 (2018).Article Google Scholar Percec, V. et al. Self-assembly of Janus dendrimers into uniform dendrimersomes and other complex architectures. Science 328, 1009–1014 (2010).Article Google Scholar Samanta, A., Baranda Pellejero, L., Masukawa, M. & Walther, A. DNA-empowered synthetic cells as minimalistic life forms. Nat. Rev. Chem. 8, 454–470 (2024).Article Google Scholar Huang, X. et al. Interfacial assembly of protein–polymer nano-conjugates into stimulus-responsive biomimetic protocells. Nat. Commun. 4, 2239 (2013).Article Google Scholar Dimova, R. & Marques, C. M. (eds) The Giant Vesicle Book (CRC, 2019).Litschel, T. & Schwille, P. Protein reconstitution inside giant unilamellar vesicles. Annu. Rev. Biophys. 50, 525–548 (2021).Article Google Scholar Czogalla, A., Franquelim, H. G. & Schwille, P. Biophysical perspective DNA nanostructures on membranes as tools for synthetic biology. Biophys J. 110, 1698–1707 (2016).Article Google Scholar Franquelim, H. G., Khmelinskaia, A., Sobczak, J. P., Dietz, H. & Schwille, P. Membrane sculpting by curved DNA origami scaffolds. Nat. Commun. 9, 811 (2018).Article Google Scholar Tran, M. P. et al. Genetic encoding and expression of RNA origami cytoskeletons in synthetic cells. Nat. Nanotechnol. https://doi.org/10.1038/s41565-025-01879-3 (2025).Article Google Scholar Yagüe Relimpio, A. et al. Bottom-up assembled synthetic SARS-CoV-2 miniviruses reveal lipid membrane affinity of omicron variant spike glycoprotein. ACS Nano 17, 23913–23923 (2023).Article Google Scholar Chen, Z. et al. Synthetic beta cells for fusion-mediated dynamic insulin secretion. Nat. Chem. Biol. 14, 86–93 (2018).Article Google Scholar Schwille, P. et al. MaxSynBio: avenues towards creating cells from the bottom up. Angew. Chem. Int. Ed. 57, 13382–13392 (2018).Article Google Scholar Ramirez-Diaz, D. A. et al. FtsZ induces membrane deformations via torsional stress upon GTP hydrolysis. Nat. Commun. 12, 3310 (2021).Article Google Scholar Ramirez-Diaz, D. A. et al. Treadmilling analysis reveals new insights into dynamic FtsZ ring architecture. PLoS Biol. 16, e2004845 (2018).Article Google Scholar Pontani, L. L. et al. Reconstitution of an actin cortex inside a liposome. Biophys. J. 96, 192–198 (2009).Article Google Scholar Miyazaki, M., Chiba, M., Eguchi, H., Ohki, T. & Ishiwata, S. Cell-sized spherical confinement induces the spontaneous formation of contractile actomyosin rings in vitro. Nat. Cell Biol. 17, 480–489 (2015).Article Google Scholar Sciortino, A. et al. Active membrane deformations of a minimal synthetic cell. Nat. Phys. https://doi.org/10.1038/s41567-025-02839-3 (2025).Article Google Scholar Hovijitra, N. T., Wuu, J. J., Peaker, B. & Swartz, J. R. Cell-free synthesis of functional aquaporin Z in synthetic liposomes. Biotechnol. Bioeng. 104, 40–49 (2009).Article Google Scholar Fujii, S., Matsuura, T., Sunami, T., Kazuta, Y. & Yomo, T. In vitro evolution of α-hemolysin using a liposome display. Proc. Natl Acad. Sci. USA 110, 16796–16801 (2013).Article Google Scholar Dannhauser, P. N. & Ungewickell, E. J. Reconstitution of clathrin-coated bud and vesicle formation with minimal components. Nat. Cell Biol. 14, 634–639 (2012).Article Google Scholar Takei, K. et al. Generation of coated intermediates of clathrin-mediated endocytosis on protein-free liposomes. Cell 94, 131–141 (1998).Article Google Scholar Kohyama, S., Yoshinaga, N., Yanagisawa, M., Fujiwara, K. & Doi, N. Cell-sized confinement controls generation and stability of a protein wave for spatiotemporal regulation in cells. eLife 8, e44591 (2019).Article Google Scholar Litschel, T., Ramm, B., Maas, R., Heymann, M. & Schwille, P. Beating vesicles: encapsulated protein oscillations cause dynamic membrane deformations. Angew. Chem. Int. Ed. 57, 16286–16290 (2018).Article Google Scholar Kohyama, S., Frohn, B. P., Babl, L. & Schwille, P. Machine learning-aided design and screening of an emergent protein function in synthetic cells. Nat. Commun. 15, 2010 (2024).Article Google Scholar Lussier, F., Staufer, O., Platzman, I. & Spatz, J. P. Can bottom-up synthetic biology generate advanced drug-delivery systems? Trends Biotechnol. 39, 445–459 (2021).Article Google Scholar Boyd, M. A. & Kamat, N. P. Designing artificial cells towards a new generation of biosensors. Trends Biotechnol. 39, 927–939 (2021).Article Google Scholar Mukwaya, V., Mann, S. & Dou, H. Chemical communication at the synthetic cell/living cell interface. Commun. Chem. 4, 161 (2021).Article Google Scholar Sela, M. et al. Brain-targeted liposomes loaded with monoclonal antibodies reduce alpha-synuclein aggregation and improve behavioral symptoms in Parkinson’s disease. Adv. Mater. 35, e2304654 (2023).Article Google Scholar Toparlak, Ö. D. et al. Artificial cells drive neural differentiation. Sci. Adv. 6, eabb4920 (2020).Article Google Scholar Lee, K. Y. et al. Photosynthetic artificial organelles sustain and control ATP-dependent reactions in a protocellular system. Nat. Biotechnol. 36, 530–535 (2018).Article Google Scholar Adamala, K. P. et al. Present and future of synthetic cell development. Nat. Rev. Mol. Cell Biol. 25, 162–167 (2023).Article Google Scholar Schwille, P. & Frohn, B. P. Hidden protein functions and what they may teach us synthesizing from the bottom-up. Trends Cell Biol. 32, 102–109 (2022).Article Google Scholar Gierasch, L. M. & Gershenson, A. Post-reductionist protein science, or putting Humpty Dumpty back together again. Nat. Chem. Biol. 5, 774 (2009).Article Google Scholar Fu, M. et al. Mechanochemical feedback loop drives persistent motion of liposomes. Nat. Phys. 19, 1211–1218 (2023).Article Google Scholar Ramm, B. et al. A diffusiophoretic mechanism for ATP-driven transport without motor proteins. Nat. Phys. 17, 850–858 (2021).Article Google Scholar Reverte-López, M. et al. Self-organized spatial targeting of contractile actomyosin rings for synthetic cell division. Nat. Commun. 15, 10415 (2024).Article Google Scholar Sternke, M., Tripp, K. W. & Barrick, D. Consensus sequence design as a general strategy to create hyperstable, biologically active proteins. Proc. Natl Acad. Sci. USA 116, 11275–11284 (2019).Article Google Scholar Rives, A. et al. Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences. Proc. Natl Acad. Sci. USA 118, e2016239118 (2021).Article Google Scholar Elnaggar, A. et al. ProtTrans: towards cracking the language of life through self-supervised learning. IEEE Trans. Pattern Anal. Mach. Intell. 44, 7112–7127 (2022).Article Google Scholar Heinzinger, M. et al. Bilingual language model for protein sequence and structure. Preprint at bioRxiv https://doi.org/10.1101/2023.07.23.550085 (2024).Hayes, T. et al. Simulating 500 million years of evolution with a language model. Science 387, 850–858 (2025).Article Google Scholar Zhang, Z. et al. Protein language models learn evolutionary statistics of interacting sequence motifs. Proc. Natl Acad. Sci. USA 121, e2406285121 (2024).Article Google Scholar Shroff, R. et al. Discovery of novel gain-of-function mutations guided by structure-based deep learning. ACS Synth. Biol. 9, 2927–2935 (2020).Article Google Scholar Hie, B. L. et al. nature biotechnology efficient evolution of human antibodies from general protein language models. Nat. Biotechnol. 42, 275–283 (2024).Article Google Scholar Dauparas, J. et al. Robust deep learning–based protein sequence design using ProteinMPNN. Science 378, 49–56 (2022).Article Google Scholar Sumida, K. H. et al. Improving protein expression, stability, and function with ProteinMPNN. J. Am. Chem. Soc. 146, 2054–2061 (2024).Article Google Scholar Garenne, D. et al. Cell-free gene expression. Nat. Rev. Methods Primers 1, 49 (2021).Article Google Scholar Kai, L. & Schwille, P. Cell-free protein synthesis and its perspectives for assembling cells from the bottom-up. Adv. Biosyst. 3, e1800322 (2019).Article Google Scholar Hettiaratchi, M. H. et al. Reengineering biocatalysts: computational redesign of chondroitinase ABC improves efficacy and stability. Sci. Adv. 6, eabc6378 (2020).Article Google Scholar Benegas, G., Ye, C., Albors, C., Li, J. C. & Song, Y. S. Genomic language models: opportunities and challenges. Preprint at https://doi.org/10.48550/arXiv.2407.11435 (2024).Nguyen, E. et al. Sequence modeling and design from molecular to genome scale with Evo. Science 386, eado9336 (2024).Article Google Scholar Brixi, G. et al. Genome modeling and design across all domains of life with Evo 2. Preprint at bioRxiv https://doi.org/10.1101/2025.02.18.638918 (2025).Hwang, Y., Cornman, A. L., Kellogg, E. H., Ovchinnikov, S. & Girguis, P. R. Genomic language model predicts protein co-regulation and function. Nat. Commun. 15, 2880 (2024).Article Google Scholar Goverde, C. A. et al. Computational design of soluble and functional membrane protein analogues. Nature 631, 449–458 (2024).Article Google Scholar Shimizu, Y. et al. Cell-free translation reconstituted with purified components. Nat. Biotechnol. 19, 751–755 (2001).Article Google Scholar Koblan, L. W. et al. Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction. Nat. Biotechnol. 36, 843–846 (2018).Article Google Scholar Zakas, P. M. et al. Enhancing the pharmaceutical properties of protein drugs by ancestral sequence reconstruction. Nat. Biotechnol. 35, 35–37 (2017).Article Google Scholar Khersonsky, O. et al. Automated design of efficient and functionally diverse enzyme repertoires. Mol. Cell 72, 178–186.e5 (2018).Article Google Scholar Funk, J. et al. ProteusAI: an open-source and user-friendly platform for machine learning-guided protein design and engineering. Preprint at bioRxiv https://doi.org/10.1101/2024.10.01.616114 (2024).Cabré, E. J. et al. Bacterial division proteins FtsZ and ZipA induce vesicle shrinkage and cell membrane invagination. J. Biol. Chem. 288, 26625–26634 (2013).Article Google Scholar Fan, S. et al. Morphology remodelling and membrane channel formation in synthetic cells via reconfigurable DNA nanorafts. Nat. Mater. 24, 278–286 (2025).Article Google Scholar Woolfson, D. N. A brief history of de novo protein design: minimal, rational, and computational. J. Mol. Biol. 433, 167160 (2021).Article Google Scholar Korendovych, I. V. & DeGrado, W. F. De novo protein design, a retrospective. Q. Rev. Biophys. 53, e3 (2020).Article Google Scholar Ovchinnikov, S. & Huang, P. S. Structure-based protein design with deep learning. Curr. Opin. Chem. Biol. 65, 136–144 (2021).Article Google Scholar Ferruz, N. et al. From sequence to function through structure: deep learning for protein design. Comput. Struct. Biotechnol. J. 21, 238–250 (2023).Article Google Scholar Mallik, B. B., Stanislaw, J., Alawathurage, T. M. & Khmelinskaia, A. De novo design of polyhedral protein assemblies: before and after the AI revolution. ChemBioChem 24, e202300117 (2023).Article Google Scholar Ingraham, J. B. et al. Illuminating protein space with a programmable generative model. Nature 623, 1070–1078 (2023).Article Google Scholar Krishna, R. et al. Generalized biomolecular modeling and design with RoseTTAFold All-Atom. Science 384, eadl2528 (2024).Article Google Scholar Harteveld, Z. et al. Exploring “dark matter” protein folds using deep learning. Cell Syst. 15, 898–910 (2024).Article Google Scholar Frank, C. et al. Scalable protein design using optimization in a relaxed sequence space. Science 386, 439–445 (2024).Article Google Scholar Dauparas, J. et al. Atomic context-conditioned protein sequence design using LigandMPNN. Preprint at bioRxiv https://doi.org/10.1101/2023.12.22.573103 (2023).Akpinaroglu, D., Seki, K., Zhu, E. & Kortemme, T. Frame2seq: structure-conditioned masked language modeling for protein sequence design. In Machine Learning for Structural Biology Workshop (NeurIPS, 2023).Bennett, N. R. et al. Improving de novo protein binder design with deep learning. Nat. Commun. 14, 2625 (2023).Article Google Scholar Johnson, S. R. et al. Computational scoring and experimental evaluation of enzymes generated by neural networks. Nat. Biotechnol. 43, 396–405 (2025).Article Google Scholar Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).Article Google Scholar Lisanza, S. L. et al. Multistate and functional protein design using RoseTTAFold sequence space diffusion. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02395-w (2024).Article Google Scholar Chu, A. E. et al. An all-atom protein generative model. Proc. Natl Acad. Sci. USA 121, e2311500121 (2024).Article Google Scholar Wang, J. et al. Scaffolding protein functional sites using deep learning. Science 377, 387–394 (2022).Article Google Scholar Yeh, A. H. W. et al. De novo design of luciferases using deep learning. Nature 614, 774–780 (2023).Article Google Scholar Gainza, P. et al. Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning. Nat. Methods 17, 184–192 (2020).Article Google Scholar Marchand, A. et al. Targeting protein–ligand neosurfaces with a generalizable deep learning tool. Nature 639, 522–531 (2025).Article Google Scholar Wicky, B. I. M. et al. Hallucinating symmetric protein assemblies. Science 378, 56–61 (2022).Article Google Scholar Praetorius, F. et al. Design of stimulus-responsive two-state hinge proteins. Science 381, 754 (2023).Article Google Scholar Eguchi, R. R. et al. Deep generative design of epitope-specific binding proteins by latent conformation optimization. Preprint at bioRxiv https://doi.org/10.1101/2022.12.22.521698 (2022).Bennett, N. R. et al. Atomically accurate de novo design of antibodies with RFdiffusion. Preprint at bioRxiv https://doi.org/10.1101/2024.03.14.585103 (2025).Schweke, H. et al. An atlas of protein homo-oligomerization across domains of life. Cell 187, 999–1010.e15 (2024).Article Google Scholar Iacovache, I., Bischofberger, M. & van der Goot, F. G. Structure and assembly of pore-forming proteins. Curr. Opin. Struct. Biol. 20, 241–246 (2010).Article Google Scholar Huber, F. et al. Emergent complexity of the cytoskeleton: from single filaments to tissue. Adv. Phys. 62, 1–112 (2013).Article Google Scholar Kirchhausen, T. Bending membranes. Nat. Cell Biol. 14, 906–908 (2012).Article Google Scholar Xu, C. et al. Computational design of transmembrane pores. Nature 585, 129–134 (2020).Article Google Scholar Berhanu, S. et al. Sculpting conducting nanopore size and shape through de novo protein design. Science 385, 282–288 (2024).Article Google Scholar Joh, N. H. et al. De novo design of a transmembrane Zn2+-transporting four-helix bundle. Science 346, 1520 (2014).Article Google Scholar Mahendran, K. R. et al. A monodisperse transmembrane α-helical peptide barrel. Nat. Chem. 9, 411–419 (2017).Article Google Scholar Lu, P. et al. Accurate computational design of multipass transmembrane proteins. Science 359, 1042–1046 (2018).Article Google Scholar Votteler, J. et al. Designed proteins induce the formation of nanocage-containing extracellular vesicles. Nature 540, 292–295 (2016).Article Google Scholar Svitkina, T. The actin cytoskeleton and actin-based motility. CSH Perspect. Biol. 10, a018267 (2018).Google Scholar Robert-Paganin, J., Pylypenko, O., Kikuti, C., Sweeney, H. L. & Houdusse, A. Force generation by myosin motors: a structural perspective. Chem. Rev. 120, 5–35 (2020).Article Google Scholar Thomas, C. & Tampé, R. Structural and mechanistic principles of ABC transporters. Annu. Rev. Biochem. 89, 605–636 (2020).Article Google Scholar Rudden, L. S. P., Hijazi, M. & Barth, P. Deep learning approaches for conformational flexibility and switching properties in protein design. Front. Mol. Biosci. 9, 928534 (2022).Article Google Scholar Harrington, L., Fletcher, J. M., Heermann, T., Woolfson, D. N. & Schwille, P. De novo design of a reversible phosphorylation-dependent switch for membrane targeting. Nat. Commun. 12, 1472 (2021).Article Google Scholar Courbet, A. et al. Computational design of mechanically coupled axle-rotor protein assemblies. Science 376, 383–390 (2022).Article Google Scholar Ng, A. H. et al. Modular and tunable biological feedback control using a de novo protein switch. Nature 572, 265–269 (2019).Article Google Scholar Langan, R. A. et al. De novo design of bioactive protein switches. Nature 572, 205–210 (2019).Article Google Scholar Lajoie, M. J. et al. Designed protein logic to target cells with precise combinations of surface antigens. Science 369, 1637–1643 (2020).Article Google Scholar Shui, S. et al. A rational blueprint for the design of chemically-controlled protein switches. Nat. Commun. 12, 5754 (2021).Article Google Scholar Glasgow, A. A. et al. Computational design of a modular protein sense-response system. Science 366, 1024–1028 (2019).Article Google Scholar Gantz, M., Neun, S., Medcalf, E. J., van Vliet, L. D. & Hollfelder, F. Ultrahigh-throughput enzyme engineering and discovery in in vitro compartments. Chem. Rev. 123, 5571–5611 (2023).Article Google Scholar Utada, A. S. et al. Monodisperse double emulsions generated from a microcapillary device. Science 308, 537–541 (2005).Article Google Scholar Lamborg, M. R. & Zamecnik, P. C. Amino acid incorporation into protein by extracts of E. coli. Biochim. Biophys. Acta 42, 206–211 (1960).Article Google Scholar Abil, Z. et al. Darwinian evolution of self-replicating DNA in a synthetic protocell. Nat. Commun. 15, 9091 (2024).Article Google Scholar Okauchi, H. & Ichihashi, N. Continuous cell-free replication and evolution of artificial genomic DNA in a compartmentalized gene expression system. ACS Synth. Biol. 10, 3507–3517 (2021).Article Google Scholar van Nies, P. et al. Self-replication of DNA by its encoded proteins in liposome-based synthetic cells. Nat. Commun. 9, 1583 (2018).Article Google Scholar Holstein, J. M., Gylstorff, C. & Hollfelder, F. Cell-free directed evolution of a protease in microdroplets at ultrahigh throughput. ACS Synth. Biol. 10, 252–257 (2021).Article Google Scholar Fallah-Araghi, A., Baret, J. C., Ryckelynck, M. & Griffiths, A. D. A completely in vitro ultrahigh-throughput droplet-based microfluidic screening system for protein engineering and directed evolution. Lab Chip 12, 882–891 (2012).Article Google Scholar Mazutis, L. et al. Droplet-based microfluidic systems for high-throughput single DNA molecule isothermal amplification and analysis. Anal. Chem. 81, 4813–4821 (2009).Article Google Scholar Packer, M. S. & Liu, D. R. Methods for the directed evolution of proteins. Nat. Rev. Genet. 16, 379–394 (2015).Article Google Scholar Romero, P. A. & Arnold, F. H. Exploring protein fitness landscapes by directed evolution. Nat. Rev. Mol. Cell Biol. 10, 866–876 (2009).Article Google Scholar Yang, G. & Withers, S. G. Ultrahigh-throughput FACS-based screening for directed enzyme evolution. ChemBioChem 10, 2704–2715 (2009).Article Google Scholar Goto, H. et al. Microfluidic screening system based on boron-doped diamond electrodes and dielectrophoretic sorting for directed evolution of NAD(P)-dependent oxidoreductases. Lab Chip 20, 852–861 (2020).Article Google Scholar Rees, P., Summers, H. D., Filby, A., Carpenter, A. E. & Doan, M. Imaging flow cytometry. Nat. Rev. Methods Primers 2, 86 (2022).Article Google Scholar Godino, E., Restrepo Sierra, A. M. & Danelon, C. Imaging flow cytometry for high-throughput phenotyping of synthetic cells. ACS Synth. Biol. 12, 2015–2028 (2023).Article Google Scholar Yang, K. K., Wu, Z. & Arnold, F. H. Machine-learning-guided directed evolution for protein engineering. Nat. Methods 16, 687–694 (2019).Article Google Scholar Biswas, S., Khimulya, G., Alley, E. C., Esvelt, K. M. & Church, G. M. Low-N protein engineering with data-efficient deep learning. Nat. Methods 18, 389–396 (2021).Article Google Scholar Pandi, A. et al. A versatile active learning workflow for optimization of genetic and metabolic networks. Nat. Commun. 13, 3876 (2022).Article Google Scholar Boiko, D. A., MacKnight, R., Kline, B. & Gomes, G. Autonomous chemical research with large language models. Nature 624, 570–578 (2023).Article Google Scholar Abolhasani, M. & Kumacheva, E. The rise of self-driving labs in chemical and materials sciences. Nat. Synth. 2, 483–492 (2023).Article Google Scholar Szymanski, N. J. et al. An autonomous laboratory for the accelerated synthesis of novel materials. Nature 624, 86–91 (2023).Article Google Scholar Rapp, J. T., Bremer, B. J. & Romero, P. A. Self-driving laboratories to autonomously navigate the protein fitness landscape. Nat. Chem. Eng. 1, 97–107 (2024).Article Google Scholar Munsamy, G. et al. Conditional language models enable the efficient design of proficient enzymes. Preprint at bioRxiv https://doi.org/10.1101/2024.05.03.592223 (2024).Braun, M. et al. Computational design of highly active de novo enzymes. Preprint at bioRxiv https://doi.org/10.1101/2024.08.02.606416 (2024).Kim, D. et al. Computational design of metallohydrolases. Preprint at bioRxiv https://doi.org/10.1101/2024.11.13.623507 (2024).Lauko, A. et al. Computational design of serine hydrolases. Science 388, eadu2454 (2025).Article Google Scholar Ferruz, N., Schmidt, S. & Höcker, B. ProtGPT2 is a deep unsupervised language model for protein design. Nat. Commun. 13, 4348 (2022).Article Google Scholar Madani, A. et al. Large language models generate functional protein sequences across diverse families. Nat. Biotechnol. 41, 1099–1106 (2023).Article Google Scholar Smolke, C. D. Building outside of the box: iGEM and the BioBricks foundation. Nat. Biotechnol. 27, 1099–1102 (2009).Article Google Scholar Kryshtafovych, A., Schwede, T., Topf, M., Fidelis, K. & Moult, J. Critical assessment of methods of protein structure prediction (CASP)—Round XV. Proteins 91, 1539–1549 (2023).Article Google Scholar Castelvecchi, D. Drivers gear up for world’s first nanocar race. Nature 544, 278–279 (2017).Article Google Scholar Fu, M., Li, X. & Zhao, W. The Asian synthetic cell initiative: highlights from the first SynCell Asia workshop. Natl Sci. Rev. 12, nwae377 (2024).Article Google Scholar Otim, G. et al. SynBio Africa’s story from the grassroots, the present, and the future. Biotechnol. Notes 4, 1–6 (2023).Article Google Scholar Noireaux, V. & Libchaber, A. A vesicle bioreactor as a step toward an artificial cell assembly. Proc. Natl Acad. Sci. USA 101, 17669–17674 (2004).Article Google Scholar Shi, X., Wu, T., Cole, C. M., Devaraj, N. K. & Joseph, S. Optimization of ClpXP activity and protein synthesis in an E. coli extract-based cell-free expression system. Sci. Rep. 8, 3488 (2018).Article Google Scholar Pols, T. et al. A synthetic metabolic network for physicochemical homeostasis. Nat. Commun. 10, 4239 (2019).Article Google Scholar Blanken, D., Foschepoth, D., Serrão, A. C. & Danelon, C. Genetically controlled membrane synthesis in liposomes. Nat. Commun. 11, 4317 (2020).Article Google Scholar Eto, S. et al. Phospholipid synthesis inside phospholipid membrane vesicles. Commun. Biol. 5, 1016 (2022).Article Google Scholar Kita, H. et al. Replication of genetic information with self-encoded replicase in liposomes. ChemBioChem 9, 2403–2410 (2008).Article Google Scholar Zhao, J. & Han, X. Investigation of artificial cells containing the Par system for bacterial plasmid segregation and inheritance mimicry. Nat. Commun. 15, 4956 (2024).Article Google Scholar Osawa, M., Anderson, D. E. & Erickson, H. P. Reconstitution of contractile FtsZ rings in liposomes. Science 320, 792–794 (2008).Article Google Scholar Kohyama, S., Merino-Salomón, A. & Schwille, P. In vitro assembly, positioning and contraction of a division ring in minimal cells. Nat. Commun. 13, 6098 (2022).Article Google Scholar De Franceschi, N., Barth, R., Meindlhumer, S., Fragasso, A. & Dekker, C. Dynamin A as a one-component division machinery for synthetic cells. Nat. Nanotechnol. 19, 70–76 (2024).Article Google Scholar Ichihashi, N. et al. Darwinian evolution in a translation-coupled RNA replication system within a cell-like compartment. Nat. Commun. 4, 2494 (2013).Article Google Scholar Adamala, K. P., Martin-Alarcon, D. A., Guthrie-Honea, K. R. & Boyden, E. S. Engineering genetic circuit interactions within and between synthetic minimal cells. Nat. Chem. 9, 431–439 (2016).Article Google Scholar Buddingh, B. C., Elzinga, J. & van Hest, J. C. M. Intercellular communication between artificial cells by allosteric amplification of a molecular signal. Nat. Commun. 11, 1652 (2020).Article Google Scholar Hindley, J. W. et al. Building a synthetic mechanosensitive signaling pathway in compartmentalized artificial cells. Proc. Natl Acad. Sci. USA 116, 16711–16716 (2019).Article Google Scholar Shin, J. & Noireaux, V. E. coli cell-free expression toolbox: application to synthetic gene circuits and artificial cells. ACS Synth. Biol. 1, 29–41 (2012).Article Google Scholar Nishimura, K. et al. Cell-free protein synthesis inside giant unilamellar vesicles analyzed by flow cytometry. Langmuir 28, 8426–8432 (2012).Article Google Scholar Hüttemann, M. et al. The multiple functions of cytochrome c and their regulation in life and death decisions of the mammalian cell: from respiration to apoptosis. Mitochondrion 11, 369–381 (2011).Article Google Scholar Callaway, E. Who will make AlphaFold3 open source? Scientists race to crack AI model. Nature 630, 14–15 (2024).Article Google Scholar Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods 19, 679–682 (2022).Article Google Scholar