Tozzo P, D’angiolella G, Brun P, Castagliuolo I, Gino S, Caenazzo L. Skin microbiome analysis for forensic human identification: what do we know so far? Microorganisms. 2020;8:873. https://doi.org/10.3390/microorganisms8060873.Article CAS PubMed PubMed Central Google Scholar Timm CM, Loomis K, Stone W, Mehoke T, Brensinger B, Pellicore M, Staniczenko P, Charles C, Nayak S, Karig DK. Isolation and characterization of diverse microbial representatives from the human skin microbiome. Microbiome. 2020;8:1–2. https://doi.org/10.1186/s40168-020-00831-y.Article CAS Google Scholar Grice EA. The intersection of microbiome and host at the skin interface: genomic-and metagenomic-based insights. Genome Res. 2015;25:1514–20. https://doi.org/10.1101/gr.191320.115.Article CAS PubMed PubMed Central Google Scholar Byrd AL, Belkaid Y, Segre JA. The human skin microbiome. Nat Rev Microbiol. 2018;16:143–55. https://doi.org/10.1038/nrmicro.2017.157.Article CAS PubMed Google Scholar Cotter PD, Ross RP, Hill C. Bacteriocins—a viable alternative to antibiotics? Nat Rev Microbiol. 2013;11:95–105. https://doi.org/10.1038/nrmicro2937.Article CAS PubMed Google Scholar Zheng J, Gänzle MG, Lin XB, Ruan L, Sun M. Diversity and dynamics of bacteriocins from human microbiome. Environ Microbiol. 2015;17:2133–43. https://doi.org/10.1111/1462-2920.12662.Article CAS PubMed Google Scholar Radaic A, de Jesus MB, Kapila YL. Bacterial anti-microbial peptides and nano-sized drug delivery systems: the state of the art toward improved bacteriocins. J Control Release. 2020;321:100–18. https://doi.org/10.1016/j.jconrel.2020.02.001.Article CAS PubMed Google Scholar Simons A, Alhanout K, Duval RE. Bacteriocins, antimicrobial peptides from bacterial origin: overview of their biology and their impact against multidrug-resistant bacteria. Microorganisms. 2020;8:639. https://doi.org/10.3390/microorganisms8050639.Article CAS PubMed PubMed Central Google Scholar Nes IF. History, current knowledge, and future directions on bacteriocin research in lactic acid bacteria. Prokaryotic antimicrobial peptides: from genes to applications. 2011 Jan 28:3–12. https://doi.org/10.1007/978-1-4419-7692-5_1Hegarty JW, Guinane CM, Ross RP, Hill C, Cotter PD. Bacteriocin production: a relatively unharnessed probiotic trait? F1000Res. 2016;5. https://doi.org/10.12688/f1000research.9615.1Gillor O, Etzion A, Riley MA. The dual role of bacteriocins as anti-and probiotics. Appl Microbiol Biotechnol. 2008;81:591–606. https://doi.org/10.1007/s00253-008-1726-5.Article CAS PubMed PubMed Central Google Scholar Deegan LH, Cotter PD, Hill C, Ross P. Bacteriocins: biological tools for bio-preservation and shelf-life extension. Int Dairy J. 2006;16:1058–71. https://doi.org/10.1016/j.idairyj.2005.10.026.Article CAS Google Scholar Legrand TP, Wynne JW, Weyrich LS, Oxley AP. A microbial sea of possibilities: current knowledge and prospects for an improved understanding of the fish microbiome. Rev Aquac. 2020;12:1101–34. https://doi.org/10.1111/raq.12375.Article Google Scholar Ogasawara M, Matsuhisa T, Kondo T, Sato J. Clinical characteristics of Corynebacterium simulans. Nagoya J Med Sci. 2021;83:269.CAS PubMed PubMed Central Google Scholar Lynch D, O’Connor PM, Cotter PD, Hill C, Field D, Begley M. Identification and characterisation of capidermicin, a novel bacteriocin produced by Staphylococcus capitis. PLoS ONE. 2019;14:e0223541 https://doi.org/10.1371/journal.pone.0223541.Article CAS PubMed PubMed Central Google Scholar Fujimura S, Nakamura T. Purification and properties of a bacteriocin-like substance (acnecin) of oral Propionibacterium acnes. Antimicrob Agents Chemother. 1978;14:893–8. https://doi.org/10.1128/AAC.14.6.893.Article CAS PubMed PubMed Central Google Scholar Chemao-Elfihri MW, Hakmi M, Abbou H, Kartti S, Fahime EE, Belyamani L, Boutayeb S. Staphylococcus hominis as a source of antimicrobial peptides: identification of a new peptide with potential antimicrobial properties using in silico approach. Arch Microbiol. 2025;207:1–5. https://doi.org/10.1007/s00203-025-04323-1.Article CAS Google Scholar Garcia-Gutierrez E, Walsh CJ, Sayavedra L, Diaz-Calvo T, Thapa D, Ruas-Madiedo P, Mayer MJ, Cotter PD, Narbad A. Genotypic and phenotypic characterization of fecal Staphylococcus epidermidis isolates suggests plasticity to adapt to different human body sites. Front Microbiol. 2020;11:688. https://doi.org/10.3389/fmicb.2020.00688.Article PubMed PubMed Central Google Scholar Borralho J, Handem S, Lança J, Ferreira B, Candeias C, Henriques AO, Hiller NL, Valente C, Sá-Leão R. Inhibition of pneumococcal growth and biofilm formation by human isolates of Streptococcus mitis and Streptococcus oralis. Appl Environ Microbiol. 2025;91:e01336–24. https://doi.org/10.1128/aem.01336-24.Article CAS PubMed PubMed Central Google Scholar Garlet A, Andre-Frei V, Del Bene N, Cameron HJ, Samuga A, Rawat V, Ternes P, Leoty-Okombi S. Facial skin microbiome composition and functional shift with aging. Microorganisms. 2024;12:1021. https://doi.org/10.3390/microorganisms12051021.Article CAS PubMed PubMed Central Google Scholar Ahmed N, Joglekar P, Deming C, NISC Comparative Sequencing Program, Lemon KP, Kong HH, Segre JA, Conlan S. Genomic characterization of the C. tuberculostearicum species complex, a prominent member of the human skin microbiome. Msystems. 2023;8:e00632–23. https://doi.org/10.1128/msystems.00632-23.Article CAS PubMed PubMed Central Google Scholar Lefèvre CR, Pelletier R, Le Monnier A, Corvec S, Bille E, Potron A, Fihman V, Farfour E, Amara M, Degand N, Barraud O. Clinical relevance and antimicrobial susceptibility profile of the unknown human pathogen Corynebacterium aurimucosum. J Med Microbiol. 2021;70:001334.Google Scholar Gladysheva IV, Chertkov KL, Cherkasov SV, Khlopko YA, Kataev VY, Valyshev AV. Probiotic potential, safety properties, and antifungal activities of Corynebacterium amycolatum ICIS 9 and Corynebacterium amycolatum ICIS 53 strains. Probiotics Antimicrob Proteins. 2023;15:588–600. https://doi.org/10.3390/microorganisms10020249.Article CAS PubMed Google Scholar Elalem NM, Shawky RM, Bahy R, Boselia AA, Emara M. The diversity of bacteriocin and its antiviral potential: an overview. Egypt J Med Microbiol. 2021;30:175–80. https://doi.org/10.21608/EJMM.2021.203649.Article Google Scholar Teber R, Asakawa S. In silico screening of bacteriocin gene clusters within a set of marine Bacillota genomes. Int J Mol Sci. 2024;25:2566 https://doi.org/10.3390/ijms25052566.Article CAS PubMed PubMed Central Google Scholar Smythe P, Wilkinson HN. The skin microbiome: current landscape and future opportunities. Int J Mol Sci. 2023;24:3950.CAS PubMed PubMed Central Google Scholar Severn MM, Horswill AR. Staphylococcus epidermidis and its dual lifestyle in skin health and infection. Nat Rev Microbiol. 2023;21:97–111. https://doi.org/10.1038/s41579-022-00780-3.Article CAS PubMed Google Scholar Shang L, Deng D, Roffel S, Gibbs S. Differential influence of Streptococcus mitis on host response to metals in reconstructed human skin and oral mucosa. Contact Dermat. 2020;83:347–60. https://doi.org/10.1111/cod.13668.Article CAS Google Scholar Salamov VS, Solovyev A. Automatic annotation of microbial genomes and metagenomic sequences. In: Li, RW, editor. Metagenomics and its applications in agriculture, biomedicine and environmental studies. Nova Science Publishers; 2011. p 61–78.Shahmuradov IA, Mohamad Razali R, Bougouffa S, Radovanovic A, Bajic VB. bTSSfinder: a novel tool for the prediction of promoters in cyanobacteria and Escherichia coli. Bioinformatics. 2017;33:334–40. https://doi.org/10.1093/bioinformatics/btw629.Article CAS PubMed Google Scholar Barakat M, Ortet P, Whitworth DE. P2CS: a database of prokaryotic two-component systems. Nucleic Acids Res. 2011;39:D771–6. https://doi.org/10.1093/nar/gkq1023.Article CAS PubMed Google Scholar Behr S, Fried L, Jung K. Identification of a novel nutrient-sensing histidine kinase/response regulator network in Escherichia coli. J Bacteriol. 2014;196:2023.PubMed PubMed Central Google Scholar Auch AF, Klenk HP, Göker M. Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs. Stand Genom Sci. 2010;2:142–8. https://doi.org/10.4056/sigs.541628.Article Google Scholar Tian T, Song J Mathematical modelling of the MAP kinase pathway using proteomic datasets. https://doi.org/10.1371/journal.pone.0042230.Dréno B, Pécastaings S, Corvec S, Veraldi S, Khammari A, Roques C. Cutibacterium acnes (Propionibacterium acnes) and acne vulgaris: a brief look at the latest updates. J Eur Acad Dermatol Venereol. 2018;32:5–14. https://doi.org/10.1111/jdv.15043.Article PubMed Google Scholar Yaacob MF, Murata A, Nor NH, Jesse FF, Yahya MF. Biochemical composition, morphology and antimicrobial susceptibility pattern of Corynebacterium pseudotuberculosis biofilm. J King Saud Univ Sci. 2021;33:101225. https://doi.org/10.1016/j.jksus.2020.10.022.Article Google Scholar Kloos WE, Schleifer KH. Isolation and characterization of staphylococci from human skin II. Descriptions of four new species: Staphylococcus warneri, Staphylococcus capitis, Staphylococcus hominis, and Staphylococcus simulans. Int J Syst Evolut Microbiol. 1975;25:62–79. https://doi.org/10.1099/00207713-25-1-62.Article CAS Google Scholar Benjamín C, Luis P, Fernando CL. Modeling the effects of pH variation and bacteriocin synthesis on bacterial growth. Appl Math Model. 2022;110:285–97. https://doi.org/10.1016/j.apm.2022.05.014.Article Google Scholar Torres MD, Cao J, Franco OL, Lu TK, de la Fuente-Nunez C. Synthetic biology and computer-based frameworks for antimicrobial peptide discovery. ACS Nano. 2021;15:2143–64.CAS PubMed PubMed Central Google Scholar Giménez-Palomares F, Fernández de Córdoba P, Mejuto JC, Bendaña-Jácome RJ, Pérez-Guerra N. Evaluation and mathematical analysis of a four-dimensional lotka–volterra-like equation designed to describe the batch nisin production system. Mathematics. 2022;10:677 https://doi.org/10.3390/math10050677.Article Google Scholar Martínez-Miranda JG, Chairez I, Durán-Páramo E. Mathematical modeling characterization of mannitol production by three heterofermentative lactic acid bacteria. Food Bioprod Process. 2022;135:11–32. https://doi.org/10.1016/j.fbp.2022.06.003.Article CAS Google Scholar Zheng Y, Szustakowski JD, Fortnow L, Roberts RJ, Kasif S. Computational identification of operons in microbial genomes. Genome Res. 2002;12:1221–30. https://doi.org/10.1101/gr.200602.Article CAS PubMed PubMed Central Google Scholar Sleator RD. An overview of the current status of eukaryote gene prediction strategies. Gene. 2010;461:1–4. https://doi.org/10.1016/j.gene.2010.04.008.Article CAS PubMed Google Scholar Mir K, Neuhaus K, Scherer S, Bossert M, Schober S. Predicting statistical properties of open reading frames in bacterial genomes. https://doi.org/10.1371/journal.pone.0045103.Rangannan V, Bansal M. High-quality annotation of promoter regions for 913 bacterial genomes. Bioinformatics. 2010;26:3043–50. https://doi.org/10.1093/bioinformatics/btq577.Article CAS PubMed Google Scholar Jung K, Fried L, Behr S, Heermann R. Histidine kinases and response regulators in networks. Curr Opin Microbiol. 2012;15:118–24. https://doi.org/10.1016/j.mib.2011.11.009.Article CAS PubMed Google Scholar Wang S. Bacterial two-component systems: structures and signaling mechanisms. Protein Phosphorylation Hum health. 2012;1:439–66. https://doi.org/10.5772/48277.Article Google Scholar Martínez B, Rodríguez A, Suárez E. Antimicrobial peptides produced by bacteria: the bacteriocins. New weapons to control bacterial growth. 2016:15–38. https://doi.org/10.1007/978-3-319-28368-5_2.Christensen GJ, Brüggemann H. Bacterial skin commensals and their role as host guardians. Benef Microbes. 2014;5:201–15. https://doi.org/10.3920/BM2012.0062.Article CAS PubMed Google Scholar Puls JS, Winnerling B, Power JJ, Krüger AM, Brajtenbach D, Johnson M, Bilici K, Camus L, Fließwasser T, Schneider T, Sahl HG. Staphylococcus epidermidis bacteriocin A37 kills natural competitors with a unique mechanism of action. ISME J. 2024;18:wrae044. https://doi.org/10.1093/ismejo/wrae044.Article PubMed PubMed Central Google Scholar Li Y, Wu Y, Peng Z, Long L, Guo Q, Tian L, He Z, Xiang S, Kang Y, Guan T. Isolation and identification of bacteriocin-producing lactic acid bacteria from Daqu and mining of bacteriocin gene. Biologia. 2024;79:2891–905. https://doi.org/10.1007/s11756-024-01746-x.Article CAS Google Scholar Daba GM, Ishibashi N, Gong X, Taki H, Yamashiro K, Lim YY, Zendo T, Sonomoto K. Characterisation of the action mechanism of a Lactococcus-specific bacteriocin, lactococcin Z. J Biosci Bioeng. 2018;126:603–10. https://doi.org/10.1016/j.jbiosc.2018.05.018.Article CAS PubMed Google Scholar Xu Z, Yang Q, Zhu Y. Transcriptome analysis reveals the molecular mechanisms of the novel Lactobacillus pentosus pentocin against Bacillus cereus. Food Res Int. 2022;151:110840. https://doi.org/10.1016/j.foodres.2021.110840.Article CAS PubMed Google Scholar Gu Q, Yan J, Lou Y, Zhang Z, Li Y, Zhu Z, Liu M, Wu D, Liang Y, Pu J, Zhao X. Bacteriocins: curial guardians of gastrointestinal tract. Compr Rev Food Sci Food Saf. 2024;23:e13292.CAS PubMed Google Scholar Deneka M, Ostash I, Yalamanchili S, Bennett CS, Ostash B. Insights into the biological properties of ligands and identity of operator site for lanK protein involved in landomycin production. Curr Microbiol. 2024;81:5.CAS Google Scholar Panina I, Taldaev A, Efremov R, Chugunov A. Molecular dynamics insight into the lipid II recognition by type A lantibiotics: nisin, epidermin, and gallidermin. Micromachines. 2021;12:1169. https://doi.org/10.3390/mi12101169.Article PubMed PubMed Central Google Scholar Yang E, Fan L, Yan J, Jiang Y, Doucette C, Fillmore S, Walker B. Influence of culture media, pH and temperature on growth and bacteriocin production of bacteriocinogenic lactic acid bacteria. AMB Express. 2018;8:1–4. https://doi.org/10.1186/s13568-018-0536-0.Article CAS Google Scholar Funck GD, de Lima Marques J, da Silva Dannenberg G, dos Santos Cruxen CE, Sehn CP, Prigol M, Silva MR, da Silva WP, Fiorentini ÂM. Characterization, toxicity, and optimization for the growth and production of bacteriocin-like substances by Lactobacillus curvatus. Probiotics Antimicrob Proteins. 2020;12:91–101. https://doi.org/10.1007/s12602-019-09531-y.Article CAS PubMed Google Scholar