by Kamil Wolos, Leszek Pstras, Urszula Bialonczyk, Malgorzata Debowska, Wojciech Dabrowski, Dorota Siwicka-Gieroba, Jan PoleszczukThis study investigates whether examining the shape of arterial pulse waves and fitting to them a physiology-based mathematical model of pulse wave propagation can provide additional insights into the state of the cardiovascular system in patients with severe traumatic brain injury (sTBI), potentially enhancing vasopressor dosing strategies. We conducted a longitudinal study on 25 sTBI patients in an intensive care unit. Arterial pulse waves were recorded non-invasively from wrists and ankles using an oscillometric method and were used to inform a 0-1D model of the arterial blood flow dynamics. Model-estimated, patient-specific cardiovascular parameters were then used in a statistical model to predict changes in the administered dose of vasopressor (norepinephrine) in the next 24 hours. The model fits to the recorded pulse waves were satisfactory, with the coefficients of determination (R2) of approximately 0.9 and the differences between the measured and model-estimated mean arterial pressure of 0.1 ± 1.0 mmHg (R2=0.99). Except for a few patients, we found no clear association between the model-estimated parameters and norepinephrine dose at the time of pulse wave recording. Nevertheless, our predictive model achieved a balanced accuracy of 0.85 when trained and tested on the entire dataset and 0.76 when using the leave-one-out cross-validation, with 8 misclassifications among the total of 77 observations. Thus, despite the known inter-patient variability of hemodynamic response to vasopressors, the proposed method allowed predicting the direction of norepinephrine dose changes in the next 24 hours with satisfactory accuracy. Subject to further studies and extensive validation, our approach could inform a decision-support tool for optimizing vasopressor dosing on a per-patient basis.