Generation of modified cows and sheep from spermatid-like haploid embryonic stem cells

Wait 5 sec.

Data availabilityHigh-throughput sequencing data generated by this study have been deposited in the GEO database under accession GSE250497. Additional supporting data can be found in Supplementary Information or from the corresponding author upon reasonable request. Source data are provided with this paper.ReferencesLi, W. et al. Androgenetic haploid embryonic stem cells produce live transgenic mice. Nature 490, 407–411 (2012).Article  CAS  PubMed  Google Scholar Yang, H. et al. Generation of genetically modified mice by oocyte injection of androgenetic haploid embryonic stem cells. Cell 149, 605–617 (2012).Article  CAS  PubMed  Google Scholar Li, W. et al. Genetic modification and screening in rat using haploid embryonic stem cells. Cell Stem Cell 14, 404–414 (2014).Article  CAS  PubMed  Google Scholar Lin, J. C. & Van Eenennaam, A. L. Electroporation-mediated genome editing of livestock zygotes. Front. Genet. 12, 648482 (2021).Article  CAS  PubMed  PubMed Central  Google Scholar Hai, T., Teng, F., Guo, R., Li, W. & Zhou, Q. One-step generation of knockout pigs by zygote injection of CRISPR/Cas system. Cell Res. 24, 372–375 (2014).Article  CAS  PubMed  PubMed Central  Google Scholar He, W., Chen, J. & Gao, S. Mammalian haploid stem cells: establishment, engineering and applications. Cell. Mol. Life Sci. 76, 2349–2367 (2019).CAS  PubMed  PubMed Central  Google Scholar Elling, U. et al. Forward and reverse genetics through derivation of haploid mouse embryonic stem cells. Cell Stem Cell 9, 563–574 (2011).Article  CAS  PubMed  PubMed Central  Google Scholar Lu, J. et al. Structure-activity relationship studies of small-molecule inhibitors of Wnt response. Bioorg. Med. Chem. Lett. 19, 3825–3827 (2009).Article  CAS  PubMed  PubMed Central  Google Scholar Huang, S. M. et al. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature 461, 614–620 (2009).Article  CAS  PubMed  Google Scholar Smith, A. Formative pluripotency: the executive phase in a developmental continuum. Development 144, 365–373 (2017).Article  CAS  PubMed  PubMed Central  Google Scholar Graf, A. et al. Fine mapping of genome activation in bovine embryos by RNA sequencing. Proc. Natl Acad. Sci. USA 111, 4139–4144 (2014).Article  CAS  PubMed  PubMed Central  Google Scholar Jiang, Z. et al. Transcriptional profiles of bovine in vivo pre-implantation development. BMC Genomics 15, 756 (2014).Article  PubMed  PubMed Central  Google Scholar Bogliotti, Y. S. et al. Efficient derivation of stable primed pluripotent embryonic stem cells from bovine blastocysts. Proc. Natl Acad. Sci. USA 115, 2090–2095 (2018).Article  CAS  PubMed  PubMed Central  Google Scholar Zhao, L. et al. Establishment of bovine expanded potential stem cells. Proc. Natl Acad. Sci. USA 118, e2018505118 (2021).Article  CAS  PubMed  PubMed Central  Google Scholar Zhong, C. et al. CRISPR-Cas9-mediated genetic screening in mice with haploid embryonic stem cells carrying a guide RNA library. Cell Stem Cell 17, 221–232 (2015).Article  CAS  PubMed  Google Scholar Yang, L., Song, L., Liu, X., Bai, L. & Li, G. KDM6A and KDM6B play contrasting roles in nuclear transfer embryos revealed by MERVL reporter system. EMBO Rep. 19, e46240 (2018).Article  PubMed  PubMed Central  Google Scholar Czernik, M., Iuso, D., Toschi, P., Khochbin, S. & Loi, P. Remodeling somatic nuclei via exogenous expression of protamine 1 to create spermatid-like structures for somatic nuclear transfer. Nat. Protoc. 11, 2170–2188 (2016).Article  CAS  PubMed  Google Scholar He, W. et al. Reduced self-diploidization and improved survival of semi-cloned mice produced from androgenetic haploid embryonic stem cells through overexpression of Dnmt3b. Stem Cell Rep. 10, 477–493 (2018).Article  CAS  Google Scholar Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157 (2019).Article  CAS  PubMed  PubMed Central  Google Scholar Rodgers, B. D. & Garikipati, D. K. Clinical, agricultural, and evolutionary biology of myostatin: a comparative review. Endocr. Rev. 29, 513–534 (2008).Article  CAS  PubMed  PubMed Central  Google Scholar Irie, N. et al. SOX17 is a critical specifier of human primordial germ cell fate. Cell 160, 253–268 (2015).Article  CAS  PubMed  PubMed Central  Google Scholar Ishii, T. & Pera, R. A. Creating human germ cells for unmet reproductive needs. Nat. Biotechnol. 34, 470–473 (2016).Article  PubMed  Google Scholar Hwang, Y. S. et al. Reconstitution of prospermatogonial specification in vitro from human induced pluripotent stem cells. Nat. Commun. 11, 5656 (2020).Article  CAS  PubMed  PubMed Central  Google Scholar He, Z. Q. et al. Generation of mouse haploid somatic cells by small molecules for genome-wide genetic screening. Cell Rep. 20, 2227–2237 (2017).Article  CAS  PubMed  Google Scholar Takahashi, S. et al. Induction of the G2/M transition stabilizes haploid embryonic stem cells. Development 141, 3842–3847 (2014).Article  CAS  PubMed  Google Scholar Gao, G. et al. Transcriptome-wide analysis of the SCNT bovine abnormal placenta during mid- to late gestation. Sci. Rep. 9, 20035 (2019).Article  CAS  PubMed  PubMed Central  Google Scholar Cheng, R. et al. Modification of alternative splicing in bovine somatic cell nuclear transfer embryos using engineered CRISPR-Cas13d. Sci. China Life Sci. 65, 2257–2268 (2022).Article  CAS  PubMed  Google Scholar Kinoshita, M. et al. Pluripotent stem cells related to embryonic disc exhibit common self-renewal requirements in diverse livestock species. Development 148, dev199901 (2021).Article  CAS  PubMed  PubMed Central  Google Scholar Kim, H. et al. Modulation of beta-catenin function maintains mouse epiblast stem cell and human embryonic stem cell self-renewal. Nat. Commun. 4, 2403 (2013).Article  PubMed  Google Scholar Ross, P. J. & Cibelli, J. B. Bovine somatic cell nuclear transfer. Methods Mol. Biol. 636, 155–177 (2010).Article  PubMed  Google Scholar Zhang, J. et al. Dissecting the molecular features of bovine-arrested eight-cell embryos using single-cell multi-omics sequencingdagger. Biol. Reprod. 108, 871–886 (2023).Article  CAS  PubMed  Google Scholar Alberio, R., Motlik, J., Stojkovic, M., Wolf, E. & Zakhartchenko, V. Behavior of M-phase synchronized blastomeres after nuclear transfer in cattle. Mol. Reprod. Dev. 57, 37–47 (2000).Article  CAS  PubMed  Google Scholar German, S. D., Lee, J. H., Campbell, K. H., Sweetman, D. & Alberio, R. Actin depolymerization is associated with meiotic acceleration in cycloheximide-treated ovine oocytes. Biol. Reprod. 92, 103 (2015).Article  PubMed  Google Scholar Yang, L. et al. Transient Dux expression facilitates nuclear transfer and induced pluripotent stem cell reprogramming. EMBO Rep. 21, e50054 (2020).Article  CAS  PubMed  PubMed Central  Google Scholar Zhou, Q. et al. Generation of fertile cloned rats by regulating oocyte activation. Science 302, 1179 (2003).Article  CAS  PubMed  Google Scholar Furusawa, T. et al. Characteristics of bovine inner cell mass-derived cell lines and their fate in chimeric conceptuses. Biol. Reprod. 89, 28 (2013).Article  PubMed  Google Scholar Ying, Q. L. et al. The ground state of embryonic stem cell self-renewal. Nature 453, 519–523 (2008).Article  CAS  PubMed  PubMed Central  Google Scholar Takashima, Y. et al. Resetting transcription factor control circuitry toward ground-state pluripotency in human. Cell 158, 1254–1269 (2014).Article  CAS  PubMed  PubMed Central  Google Scholar Theunissen, T. W. et al. Systematic identification of culture conditions for induction and maintenance of naive human pluripotency. Cell Stem Cell 15, 471–487 (2014).Article  CAS  PubMed  PubMed Central  Google Scholar Bao, S. et al. Derivation of hypermethylated pluripotent embryonic stem cells with high potency. Cell Res. 28, 22–34 (2018).Article  CAS  PubMed  Google Scholar Yang, Y. et al. Derivation of pluripotent stem cells with in vivo embryonic and extraembryonic potency. Cell 169, 243–257 (2017).Article  CAS  PubMed  PubMed Central  Google Scholar Yang, J. et al. Establishment of mouse expanded potential stem cells. Nature 550, 393–397 (2017).Article  CAS  PubMed  PubMed Central  Google Scholar Gao, X. et al. Establishment of porcine and human expanded potential stem cells. Nat. Cell Biol. 21, 687–699 (2019).Article  CAS  PubMed  PubMed Central  Google Scholar Vilarino, M. et al. Derivation of sheep embryonic stem cells under optimized conditions. Reproduction 160, 761–772 (2020).Article  CAS  PubMed  Google Scholar Oh, S. K. et al. Methods for expansion of human embryonic stem cells. Stem Cells 23, 605–609 (2005).Article  CAS  PubMed  Google Scholar De Los Angeles, A., Okamura, D. & Wu, J. Highly efficient derivation of pluripotent stem cells from mouse preimplantation and postimplantation embryos in serum-free conditions. Methods Mol. Biol. 2005, 29–36 (2019).Article  Google Scholar Ludwig, T. E. et al. Feeder-independent culture of human embryonic stem cells. Nat. Methods 3, 637–646 (2006).Article  CAS  PubMed  Google Scholar Zhang, X. M. et al. In vitro expansion of human sperm through nuclear transfer. Cell Res. 30, 356–359 (2020).Article  PubMed  Google Scholar Zhong, C. et al. Generation of human haploid embryonic stem cells from parthenogenetic embryos obtained by microsurgical removal of male pronucleus. Cell Res. 26, 743–746 (2016).Article  PubMed  PubMed Central  Google Scholar Elling, U. et al. Derivation and maintenance of mouse haploid embryonic stem cells. Nat. Protoc. 14, 1991–2014 (2019).Article  CAS  PubMed  PubMed Central  Google Scholar Shirasawa, A. et al. Efficient derivation of embryonic stem cells and primordial germ cell-like cells in cattle. J. Reprod. Dev. 70, 82–95 (2024).Article  CAS  PubMed  PubMed Central  Google Scholar Ross, P. J. et al. Activation of bovine somatic cell nuclear transfer embryos by PLCZ cRNA injection. Reproduction 137, 427–437 (2009).Article  CAS  PubMed  Google Scholar Owen, J. R. et al. One-step generation of a targeted knock-in calf using the CRISPR-Cas9 system in bovine zygotes. BMC Genomics 22, 118 (2021).Article  CAS  PubMed  PubMed Central  Google Scholar Bustin, S. A. et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55, 611–622 (2009).Article  CAS  PubMed  Google Scholar Hajkova, P. et al. DNA-methylation analysis by the bisulfite-assisted genomic sequencing method. Methods Mol. Biol. 200, 143–154 (2002).CAS  PubMed  Google Scholar Xie, Y. et al. An episomal vector-based CRISPR/Cas9 system for highly efficient gene knockout in human pluripotent stem cells. Sci. Rep. 7, 2320 (2017).Article  PubMed  PubMed Central  Google Scholar Chow, R. D., Chen, J. S., Shen, J. & Chen, S. A web tool for the design of prime-editing guide RNAs. Nat. Biomed. Eng. 5, 190–194 (2021).Article  CAS  PubMed  Google Scholar Palazzese, L., Czernik, M., Iuso, D., Toschi, P. & Loi, P. Nuclear quiescence and histone hyper-acetylation jointly improve protamine-mediated nuclear remodeling in sheep fibroblasts. PLoS ONE 13, e0193954 (2018).Article  PubMed  PubMed Central  Google Scholar Grobet, L. et al. A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat. Genet. 17, 71–74 (1997).Article  CAS  PubMed  Google Scholar Clop, A. et al. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat. Genet. 38, 813–818 (2006).Article  CAS  PubMed  Google Scholar Chen, Y., Spitzer, S., Agathou, S., Karadottir, R. T. & Smith, A. Gene editing in rat embryonic stem cells to produce in vitro models and in vivo reporters. Stem Cell Rep. 9, 1262–1274 (2017).Article  CAS  Google Scholar Brinkman, E. K., Chen, T., Amendola, M. & van Steensel, B. Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res. 42, e168 (2014).Article  PubMed  PubMed Central  Google Scholar Patch, A. M. et al. Whole-genome characterization of chemoresistant ovarian cancer. Nature 521, 489–494 (2015).Article  CAS  PubMed  Google Scholar Xie, C. & Tammi, M. T. CNV-seq, a new method to detect copy number variation using high-throughput sequencing. BMC Bioinformatics 10, 80 (2009).Article  PubMed  PubMed Central  Google Scholar Shen, H. et al. Mouse totipotent stem cells captured and maintained through spliceosomal repression. Cell 184, 2843–2859 (2021).Article  CAS  PubMed  Google Scholar Kaya-Okur, H. S. et al. CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat. Commun. 10, 1930 (2019).Article  PubMed  PubMed Central  Google Scholar Trapnell, C., Pachter, L. & Salzberg, S. L. TopHat: discovering splice junctions with RNA-seq. Bioinformatics 25, 1105–1111 (2009).Article  CAS  PubMed  PubMed Central  Google Scholar Trapnell, C. et al. Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515 (2010).Article  CAS  PubMed  PubMed Central  Google Scholar Huang da, W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).Article  PubMed  Google Scholar Zhao, T. et al. Single-cell RNA-seq reveals dynamic early embryonic-like programs during chemical reprogramming. Cell Stem Cell 23, 31–45 (2018).Article  CAS  PubMed  Google Scholar Peng, G. et al. Spatial transcriptome for the molecular annotation of lineage fates and cell identity in Mid-gastrula Mouse Embryo. Dev. Cell 36, 681–697 (2016).Zhi, M. et al. Generation and characterization of stable pig pregastrulation epiblast stem cell lines. Cell Res. 32, 383–400 (2022).Wen, J. et al. Single-cell analysis reveals lineage segregation in early post-implantation mouse embryos. J. Biol. Chem. 292, 9840–9854 (2017).Nakamura, T. et al. A developmental coordinate of pluripotency among mice, monkeys and humans. Nature 537, 57–62 (2016).van Leeuwen, J., Berg, D. K. & Pfeffer, P. L. Morphological and gene expression changes in cattle embryos from hatched blastocyst to early gastrulation stages after transfer of in vitro produced embryos. PLoS ONE https://doi.org/10.1371/journal.pone.0129787 (2015).Pérez-Gómez, A., González-Brusi, L., Bermejo-Álvarez, P. & Ramos-Ibeas, P. Lineage differentiation markers as a proxy for embryo viability in farm ungulates. Front. Vet. Sci. 8, 680539 (2021).Download referencesAcknowledgementsWe thank H. Wang (IMU) for technical help. This study was supported by the National Natural Science Foundation of China (32341052 to L.Y., 32360837 to L.Y. and 32488101 to S.G.), Scientific and Technological Innovation 2030 (2023ZD0404803 to L.Y.), Inner Mongolia Open Competition Projects (2022JBGS0025 to L.Y.), Inner Mongolia Science and Technology Leading Team (2022LJRC0006 to G.L.), Inner Mongolia Science and Technology Major Projects (2022ZD0008 to L.Y., 2023KJHZ0028 to L.Y. and 2025KYPT0101 to L.Y.), Inner Mongolia Young Talents Projects (NJYT23138 to L.Y.), Inner Mongolia Natural Science Foundation (2023MS03004 to L.Y.), National Agricultural Science and Technology Project (NK2022130203 to L.Y.), Collaborative Innovation among Universities in Hohhot (XTCX202306 to L.Y.), Ministry of Education Engineering Centre Project (JYBGCSYS2022 to L.Y.), Xinjiang Uygur Science and Technology Major Project (2023A0201116 to L.Y.) and TongLiao Open Competition Projects (TL2024TW0020103 to L.Y.).Author informationAuthor notesDeceased: Li Zhang.These authors contributed equally: Lei Yang, Anqi Di, Lishuang Song.These authors jointly supervised this work: Lei Yang, Shaorong Gao, Guangpeng Li.Authors and AffiliationsCollege of Life Sciences, Inner Mongolia University, Hohhot, ChinaLei Yang, Anqi Di, Lishuang Song, Xuefei Liu, Di Wu, Song Wang, Zhenting Hao, Lige Bu, Chunling Bai, Guanghua Su, Zhuying Wei, Li Zhang & Guangpeng LiFrontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, ChinaLei Yang & Shaorong GaoKey Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, ChinaSong Wang & Zhonghua LiuAuthorsLei YangView author publicationsSearch author on:PubMed Google ScholarAnqi DiView author publicationsSearch author on:PubMed Google ScholarLishuang SongView author publicationsSearch author on:PubMed Google ScholarXuefei LiuView author publicationsSearch author on:PubMed Google ScholarDi WuView author publicationsSearch author on:PubMed Google ScholarSong WangView author publicationsSearch author on:PubMed Google ScholarZhenting HaoView author publicationsSearch author on:PubMed Google ScholarLige BuView author publicationsSearch author on:PubMed Google ScholarChunling BaiView author publicationsSearch author on:PubMed Google ScholarGuanghua SuView author publicationsSearch author on:PubMed Google ScholarZhuying WeiView author publicationsSearch author on:PubMed Google ScholarLi ZhangView author publicationsSearch author on:PubMed Google ScholarZhonghua LiuView author publicationsSearch author on:PubMed Google ScholarShaorong GaoView author publicationsSearch author on:PubMed Google ScholarGuangpeng LiView author publicationsSearch author on:PubMed Google ScholarContributionsL.Y., A.D., X.L., L.S., D.W., S.W., Z.H., L.B., C.B., G.S., Z.W. and L.Z. performed experiments. L.Y., G.L. and S.G. designed experiments. L.Y. and G.L. wrote the manuscript.Corresponding authorsCorrespondence to Lei Yang, Shaorong Gao or Guangpeng Li.Ethics declarationsCompeting interestsThe authors declare no competing interests.Peer reviewPeer review informationNature Biotechnology thanks Björn Oback, Steven Stice and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Extended dataExtended Data Fig. 1 Generation of ruminant haploid androgenetic embryos.a. Schematic overview of haSCs derivation, haploid embryos were generated by removing female pronucleus from normal diploid zygotes. ♂, male pronucleus; ♀, female pronucleus. b. Immunostaining for 5-hydroxymethylcytosine (5hmC) in bovine (left) and ovine (right) embryos. The haploid androgenetic embryos are generated by sperm injection into enucleated oocytes or by removing female pronucleus from fertilized oocytes. The diploid IVF embryos were used as controls. ♂, male pronucleus; ♀, female pronucleus; n = 3 independent experiments with similar results. Scale bar, 25 μm. c. Immunostaining for trophectoderm marker CDX2 in the bovine and ovine blastocysts on day 7 after activation or insemination. The haploid and diploid embryos are generated as described in Extended Data Fig. 1b. n = 3 independent experiments with similar results. Scale bar, 50 μm. d. Quantification for the cell numbers in the bovine and ovine blastocysts on day 7 after activation or insemination. The haploid and diploid embryos are generated as described in Extended Data Fig. 1b; ICM, inner cell mass; Data are mean ± s.d. (n = 18 IVF, n = 19 injecting, n = 21 removing (top left); n = 18 IVF, n = 19 injecting, n = 21 removing (top right); n = 22 IVF, n = 19 injecting, n = 23 removing (bottom left); n represents total embryos of three independent experiments); P values are from unpaired, two-tailed Student’s t-tests.Extended Data Fig. 2 Derivation of ruminant haSCs from haploid androgenetic embryos.a. List of main components in the well-known medium that support the derivation of mouse, human, and bovine diploid SCs, including 2i/LIF, mTeSR1, t2iL+Gö, 5i/L/A, ABCL, LCDM, EPSC, CTFR, and bEPSCM. The brief names of these chemicals and their respective pathways which they regulate are also shown. b. Morphology of bovine haploid androgenetic ICMs under different culture medium conditions at indicated time points. D, day; P, passage; n = 3 independent experiments with similar results. Scale bars, 200 μm. c. Representative immunofluorescence (IF) images of pluripotency factors in the indicated primary outgrowth. n = 3 independent experiments with similar results. Scale bar, 100 μm. d, e. The efficiency of outgrowth and haSCs derivation of haploid androgenetic ICMs by different culture mediums. n = 3 independent experiments with similar results. N = total number of ICMs used for each condition.Extended Data Fig. 3 FACE medium supports ruminant haSCs long-term culture.a. List of different combinations of small molecules used in this study. b. Summary of b-haSCs derivation efficiency from bovine haploid androgenetic ICMs by different combinations of small molecules. c. Morphology of bovine haploid androgenetic ICMs under different combinations of small molecules. Scale bars, 200 μm. d. The total cell numbers of b-haSCs during cell passaging under different concentrations of Activin-A. Cells were plated at 5 ×105 cells per well and were cultured for 4 days; Data are mean ± s.d. (n = 3 independent experiments); P values are from unpaired, two-tailed Student’s t-tests. e. Haploidy analysis in b-haSCs derived using 10 ng/mL and 20 ng/mL of Activin-A. The figure on the left is the same as Fig. 1e; n = 3 independent experiments with similar results. Note that 10 ng/mL Activin-A was beneficial for maintaining haploidy stability.Extended Data Fig. 4 Further characterization of ruminant haSCs.a. DNA copy number variation (CNV) analysis of ruminant haSCs at passage 25. Note that no significant genomic alternations. The results were displayed on a log2 scale. Chromosomes are arranged in numerical order and in different colours. b. Summary of karyotyping analysis of ruminant haSCs at different passages. Total, the total number of examined cells in which chromosome was successfully spread. c. Determination of the sex chromosome of ruminant haSCs by PCR assay. The primers are specific for X chromosome-specific PHEX and Y chromosome-specific ZFY genes. Normal XX and XY diploid SCs were used as controls. M, DNA marker. n = 3 independent experiments with similar results. d. Scatter-plots showing the reproducibility of buRNA-seq between different biological replicates of ruminant haSCs. The Pearson’s correlation coefficients (Cor.) are shown. e. Principal-component analysis (PCA) showing the separation of b-haSCs and bovine pre-implantation embryos. f. Scatter plot based on PCA of b-haSCs, diploid primed b-SCs, and diploid expanded b-SCs, showing that the projection position of b-haSCs is located between expanded and primed b-SCs. g. Correlation matrices showing coefficients among b-haSCs, diploid primed b-SCs, diploid expanded b-SCs, and pre-implantation bovine embryos. h. Heatmap displaying the differentially expressed genes (DEGs) among b-haSCs, primed b-SCs, and expanded b-SCs (P  2, FPKM > 2) in growth-retarded Pro-iCHI fetuses compared with normal Pro-iCHI fetuses and control IVF fetuses. FC, fold change; FPKM, fragments per kilobase of transcript per million mapped reads. e. Bisulfite pyrosequencing analysis of paternally imprinted H19 DMR in bovine and ovine fetuses produced by Pro-iCHI or IVF approach. Note that all the fetuses maintained allelic-biased DNA methylation in H19 DMR. The filled and open squares represent methylated and unmethylated CpG sites, respectively. f. Schematic representation of the ePE vector used in this study. This “all-in-one” episomal plasmid contained the necessary elements of CRISPR-prime editor (PE), including Cas9-nickase and reverse-transcriptase (RT) fusion sequence, and a prime-editing guide RNA (pegRNA). The vector also contains an EF1a promoter-driven EGFP for tracking transfection efficiency. Puro, Puromycin resistance gene. g. Western blots analysis of MSTN protein in wild-type (WT) and MSTN-edited ruminant haSCs. n = 3 independent experiments with similar results. h. Episomal plasmid was decreased within haSCs over time after withdrawing puromycin drug selection. Numbers in the X-axis indicate cell passage number (passage cells every 5 days). Amp, ampicillin; Actin, beta-actin; mean ± s.d., n = 3 independent experiments; amplification cycle was maintained at 40 and the cycle threshold (Ct) values > 35 were considered as not detected (ND). i. Western blots analysis of MSTN protein in wild-type (WT) and MSTN-edited live cattle. n = 3 independent experiments with similar results. j. Sanger sequencing results of the targeting site in wild-type (WT) and MSTN-edited live cattle, the deletion sizes (Δ) are indicated. k. Genomic PCR showing the absence of exo-vector in lamb and calf produced by Pro-iCHI::ePE system. The positive and negative controls were amplified from the episomal plasmid and water, respectively. n = 3 independent experiments with similar results. Lane 1: positive control; Lane 2: sheep; Lanes 3-5: cattle; M, DNA marker.Source dataSupplementary informationSupplementary InformationSupplementary Figs. 1–8, Discussion and Tables 1–8.Reporting SummarySupplementary Data 1Unprocessed gel for Supplementary Fig. 1b,d.Supplementary Data 2Unprocessed gel for Supplementary Fig. 7d.Source dataSource Data Extended Data Fig. 4Unprocessed gels for Extended Data Fig. 4c.Source Data Extended Data Fig. 5Unprocessed gels and western blot for Extended Data Fig. 5d,e.Source Data Extended Data Fig. 6Unprocessed gels for Extended Data Fig. 6b.Source Data Extended Data Fig. 10Unprocessed gels and western blot for Extended Data Fig. 10g,i,k.Rights and permissionsSpringer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.Reprints and permissionsAbout this article