Decoding replication stress responses through post-translational modifications

Wait 5 sec.

Zeman, M. K. & Cimprich, K. A. Causes and consequences of replication stress. Nat. Cell Biol. 16, 2–9 (2014).Article  CAS  PubMed  PubMed Central  Google Scholar Berti, M., Cortez, D. & Lopes, M. The plasticity of DNA replication forks in response to clinically relevant genotoxic stress. Nat. Rev. Mol. Cell Biol. 21, 633–651 (2020).Article  CAS  PubMed  Google Scholar Saxena, S. & Zou, L. Hallmarks of DNA replication stress. Mol. Cell 82, 2298–2314 (2022).Article  CAS  PubMed  PubMed Central  Google Scholar Neelsen, K. J. & Lopes, M. Replication fork reversal in eukaryotes: from dead end to dynamic response. Nat. Rev. Mol. Cell Biol. 16, 207–220 (2015).Article  CAS  PubMed  Google Scholar Qiu, S., Jiang, G., Cao, L. & Huang, J. Replication fork reversal and protection. Front. Cell Dev. Biol. 9, 670392 (2021).Article  PubMed  PubMed Central  Google Scholar Marians, K. J. Lesion bypass and the reactivation of stalled replication forks. Annu. Rev. Biochem. 87, 217–238 (2018).Article  CAS  PubMed  PubMed Central  Google Scholar Quinet, A., Tirman, S., Cybulla, E., Meroni, A. & Vindigni, A. To skip or not to skip: choosing repriming to tolerate DNA damage. Mol. Cell 81, 649–658 (2021).Article  CAS  PubMed  PubMed Central  Google Scholar Saldivar, J. C., Cortez, D. & Cimprich, K. A. The essential kinase ATR: ensuring faithful duplication of a challenging genome. Nat. Rev. Mol. Cell Biol. 18, 622–636 (2017).Article  CAS  PubMed  PubMed Central  Google Scholar Simoneau, A. & Zou, L. An extending ATR-CHK1 circuitry: the replication stress response and beyond. Curr. Opin. Genet. Dev. 71, 92–98 (2021).Article  CAS  PubMed  Google Scholar Gaillard, H., García-Muse, T. & Aguilera, A. Replication stress and cancer. Nat. Rev. Cancer 15, 276–289 (2015).Article  CAS  PubMed  Google Scholar Macheret, M. & Halazonetis, T. D. DNA replication stress as a hallmark of cancer. Annu. Rev. Pathol. 10, 425–448 (2015).Article  CAS  PubMed  Google Scholar Lee, J. M., Hammarén, H. M., Savitski, M. M. & Baek, S. H. Control of protein stability by post-translational modifications. Nat. Commun. 14, 201 (2023).Article  CAS  PubMed  PubMed Central  Google Scholar Dikic, I. & Schulman, B. A. An expanded lexicon for the ubiquitin code. Nat. Rev. Mol. Cell Biol. 24, 273–287 (2023).Article  CAS  PubMed  Google Scholar Millán-Zambrano, G., Burton, A., Bannister, A. J. & Schneider, R. Histone post-translational modifications—cause and consequence of genome function. Nat. Rev. Genet. 23, 563–580 (2022).Article  PubMed  Google Scholar Byun, T. S., Pacek, M., Yee, M. C., Walter, J. C. & Cimprich, K. A. Functional uncoupling of MCM helicase and DNA polymerase activities activates the ATR-dependent checkpoint. Genes Dev. 19, 1040–1052 (2005).Article  CAS  PubMed  PubMed Central  Google Scholar Lopes, M., Foiani, M. & Sogo, J. M. Multiple mechanisms control chromosome integrity after replication fork uncoupling and restart at irreparable UV lesions. Mol. Cell 21, 15–27 (2006).Article  CAS  PubMed  Google Scholar Maréchal, A. & Zou, L. RPA-coated single-stranded DNA as a platform for post-translational modifications in the DNA damage response. Cell Res. 25, 9–23 (2015).Article  PubMed  Google Scholar Liu, T. & Huang, J. Replication protein A and more: single-stranded DNA-binding proteins in eukaryotic cells. Acta Biochim. Biophys. Sin. (Shanghai) 48, 665–670 (2016).Article  CAS  PubMed  Google Scholar Zou, L. & Elledge, S. J. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 300, 1542–1548 (2003).Article  CAS  PubMed  Google Scholar Ngoi, N. Y. L. et al. Targeting ATR in patients with cancer. Nat. Rev. Clin. Oncol. 21, 278–293 (2024).Article  PubMed  Google Scholar Kavlashvili, T., Liu, W., Mohamed, T. M., Cortez, D. & Dewar, J. M. Replication fork uncoupling causes nascent strand degradation and fork reversal. Nat. Struct. Mol. Biol. 30, 115–124 (2023).Article  CAS  PubMed  PubMed Central  Google Scholar Joseph, S. A. et al. Time for remodeling: SNF2-family DNA translocases in replication fork metabolism and human disease. DNA Repair (Amst.) 95, 102943 (2020).Article  CAS  PubMed  Google Scholar Tian, T. et al. The ZATT-TOP2A-PICH axis drives extensive replication fork reversal to promote genome stability. Mol. Cell 81, 198–211 (2021).Article  CAS  PubMed  Google Scholar Ding, L. et al. RNF4 controls the extent of replication fork reversal to preserve genome stability. Nucleic Acids Res. 50, 5672–5687 (2022).Article  CAS  PubMed  PubMed Central  Google Scholar Liu, W. et al. RAD51 bypasses the CMG helicase to promote replication fork reversal. Science 380, 382–387 (2023).Article  CAS  PubMed  PubMed Central  Google Scholar Bugreev, D. V., Rossi, M. J. & Mazin, A. V. Cooperation of RAD51 and RAD54 in regression of a model replication fork. Nucleic Acids Res. 39, 2153–2164 (2011).Article  CAS  PubMed  Google Scholar Halder, S., Ranjha, L., Taglialatela, A., Ciccia, A. & Cejka, P. Strand annealing and motor driven activities of SMARCAL1 and ZRANB3 are stimulated by RAD51 and the paralog complex. Nucleic Acids Res. 50, 8008–8022 (2022).Article  CAS  PubMed  PubMed Central  Google Scholar Pasero, P. & Vindigni, A. Nucleases acting at stalled forks: how to reboot the replication program with a few shortcuts. Annu. Rev. Genet. 51, 477–499 (2017).Article  CAS  PubMed  Google Scholar Bhat, K. P. & Cortez, D. RPA and RAD51: fork reversal, fork protection, and genome stability. Nat. Struct. Mol. Biol. 25, 446–453 (2018).Article  CAS  PubMed  PubMed Central  Google Scholar Xu, S. et al. Abro1 maintains genome stability and limits replication stress by protecting replication fork stability. Genes Dev. 31, 1469–1482 (2017).Article  CAS  PubMed  PubMed Central  Google Scholar Song, L. et al. Dynamic control of RNA-DNA hybrid formation orchestrates DNA2 activation at stalled forks by RNAPII and DDX39A. Mol. Cell 85, 506–522 (2025).Article  CAS  PubMed  Google Scholar Xu, Z. et al. DDX39A resolves replication fork-associated RNA-DNA hybrids to balance fork protection and cleavage for genomic stability maintenance. Mol. Cell 85, 490–505 (2025).Article  CAS  PubMed  Google Scholar Berti, M. et al. Human RECQ1 promotes restart of replication forks reversed by DNA topoisomerase I inhibition. Nat. Struct. Mol. Biol. 20, 347–354 (2013).Article  CAS  PubMed  PubMed Central  Google Scholar Thangavel, S. et al. DNA2 drives processing and restart of reversed replication forks in human cells. J. Cell Biol. 208, 545–562 (2015).Article  CAS  PubMed  PubMed Central  Google Scholar Xie, H. et al. Synergistic protection of nascent DNA at stalled forks by MSANTD4 and BRCA1/2-RAD51. Nat. Chem. Biol. 21, 1182–1193 (2025).Article  CAS  PubMed  Google Scholar Bryant, H. E. et al. PARP is activated at stalled forks to mediate Mre11-dependent replication restart and recombination. EMBO J. 28, 2601–2615 (2009).Article  CAS  PubMed  PubMed Central  Google Scholar Bianchi, J. et al. PrimPol bypasses UV photoproducts during eukaryotic chromosomal DNA replication. Mol. Cell 52, 566–573 (2013).Article  CAS  PubMed  PubMed Central  Google Scholar Wan, L. et al. hPrimpol1/CCDC111 is a human DNA primase-polymerase required for the maintenance of genome integrity. EMBO Rep. 14, 1104–1112 (2013).Article  CAS  PubMed  PubMed Central  Google Scholar Mourón, S. et al. Repriming of DNA synthesis at stalled replication forks by human PrimPol. Nat. Struct. Mol. Biol. 20, 1383–1389 (2013).Article  PubMed  Google Scholar García-Gómez, S. et al. PrimPol, an archaic primase/polymerase operating in human cells. Mol. Cell 52, 541–553 (2013).Article  PubMed  PubMed Central  Google Scholar Tirman, S. et al. Temporally distinct post-replicative repair mechanisms fill PRIMPOL-dependent ssDNA gaps in human cells. Mol. Cell 81, 4026–4040 (2021).Article  CAS  PubMed  PubMed Central  Google Scholar Taglialatela, A. et al. REV1-Polζ maintains the viability of homologous recombination-deficient cancer cells through mutagenic repair of PRIMPOL-dependent ssDNA gaps. Mol. Cell 81, 4008–4025 (2021).Article  CAS  PubMed  PubMed Central  Google Scholar Mirsanaye, A. S., Typas, D. & Mailand, N. Ubiquitylation at stressed replication forks: mechanisms and functions. Trends Cell Biol. 31, 584–597 (2021).Article  CAS  PubMed  Google Scholar García-Rodríguez, N., Wong, R. P. & Ulrich, H. D. Functions of ubiquitin and SUMO in DNA replication and replication stress. Front. Genet. 7, 87 (2016).Article  PubMed  PubMed Central  Google Scholar Chen, Y. & Yuan, J. The post translational modification of key regulators of ATR signaling in DNA replication. Genome Instab. Dis. 2, 92–101 (2021).Article  CAS  Google Scholar Narita, T., Weinert, B. T. & Choudhary, C. Functions and mechanisms of non-histone protein acetylation. Nat. Rev. Mol. Cell Biol. 20, 156–174 (2019).Article  CAS  PubMed  Google Scholar Shvedunova, M. & Akhtar, A. Modulation of cellular processes by histone and non-histone protein acetylation. Nat. Rev. Mol. Cell Biol. 23, 329–349 (2022).Article  CAS  PubMed  Google Scholar Zhang, H. et al. ATRIP deacetylation by SIRT2 drives ATR checkpoint activation by promoting binding to RPA-ssDNA. Cell Rep. 14, 1435–1447 (2016).Article  CAS  PubMed  PubMed Central  Google Scholar Liu, T. et al. A divergent role of the SIRT1-TopBP1 axis in regulating metabolic checkpoint and DNA damage checkpoint. Mol. Cell 56, 681–695 (2014).Article  CAS  PubMed  PubMed Central  Google Scholar Matheson, C. J., Backos, D. S. & Reigan, P. Targeting WEE1 kinase in cancer. Trends Pharmacol. Sci. 37, 872–881 (2016).Article  CAS  PubMed  Google Scholar Zhu, X. et al. SIRT1 deacetylates WEE1 and sensitizes cancer cells to WEE1 inhibition. Nat. Chem. Biol. 19, 585–595 (2023).Article  CAS  PubMed  Google Scholar Yuan, J., Luo, K., Liu, T. & Lou, Z. Regulation of SIRT1 activity by genotoxic stress. Genes Dev. 26, 791–796 (2012).Article  CAS  PubMed  PubMed Central  Google Scholar Zannini, L., Buscemi, G., Kim, J. E., Fontanella, E. & Delia, D. DBC1 phosphorylation by ATM/ATR inhibits SIRT1 deacetylase in response to DNA damage. J. Mol. Cell. Biol. 4, 294–303 (2012).Article  CAS  PubMed  Google Scholar Lee, S. Y., Kim, J. J. & Miller, K. M. Bromodomain proteins: protectors against endogenous DNA damage and facilitators of genome integrity. Exp. Mol. Med. 53, 1268–1277 (2021).Article  CAS  PubMed  PubMed Central  Google Scholar Zhang, J. et al. BRD4 facilitates replication stress-induced DNA damage response. Oncogene 37, 3763–3777 (2018).Article  CAS  PubMed  PubMed Central  Google Scholar Suskiewicz, M. J., Prokhorova, E., Rack, J. G. M. & Ahel, I. ADP-ribosylation from molecular mechanisms to therapeutic implications. Cell 186, 4475–4495 (2023).Article  CAS  PubMed  PubMed Central  Google Scholar Yu, L., Liu, X. & Yu, X. ADP-ribosylhydrolases: from DNA damage repair to COVID-19. J. Zhejiang Univ. Sci. B 22, 21–30 (2021).Article  CAS  PubMed  PubMed Central  Google Scholar Huang, D. & Kraus, W. L. The expanding universe of PARP1-mediated molecular and therapeutic mechanisms. Mol. Cell 82, 2315–2334 (2022).Article  CAS  PubMed  PubMed Central  Google Scholar Ray Chaudhuri, A. & Nussenzweig, A. The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. Nat. Rev. Mol. Cell Biol. 18, 610–621 (2017).Article  CAS  PubMed  PubMed Central  Google Scholar Azarm, K. & Smith, S. Nuclear PARPs and genome integrity. Genes Dev. 34, 285–301 (2020).Article  CAS  PubMed  PubMed Central  Google Scholar Hanzlikova, H. et al. The importance of poly(ADP-ribose) polymerase as a sensor of unligated Okazaki fragments during DNA replication. Mol. Cell 71, 319–331 (2018).Article  CAS  PubMed  PubMed Central  Google Scholar Vaitsiankova, A. et al. PARP inhibition impedes the maturation of nascent DNA strands during DNA replication. Nat. Struct. Mol. Biol. 29, 329–338 (2022).Article  CAS  PubMed  PubMed Central  Google Scholar Yang, Y. G., Cortes, U., Patnaik, S., Jasin, M. & Wang, Z. Q. Ablation of PARP-1 does not interfere with the repair of DNA double-strand breaks, but compromises the reactivation of stalled replication forks. Oncogene 23, 3872–3882 (2004).Article  CAS  PubMed  Google Scholar Ray Chaudhuri, A. et al. Topoisomerase I poisoning results in PARP-mediated replication fork reversal. Nat. Struct. Mol. Biol. 19, 417–423 (2012).Article  CAS  PubMed  Google Scholar Min, W. et al. Poly(ADP-ribose) binding to Chk1 at stalled replication forks is required for S-phase checkpoint activation. Nat. Commun. 4, 2993 (2013).Article  PubMed  Google Scholar Duursma, A. M., Driscoll, R., Elias, J. E. & Cimprich, K. A. A role for the MRN complex in ATR activation via TOPBP1 recruitment. Mol. Cell 50, 116–122 (2013).Article  CAS  PubMed  PubMed Central  Google Scholar Lee, J. & Dunphy, W. G. The Mre11–Rad50–Nbs1 (MRN) complex has a specific role in the activation of Chk1 in response to stalled replication forks. Mol. Biol. Cell 24, 1343–1353 (2013).Article  CAS  PubMed  PubMed Central  Google Scholar Ho, Y. C. et al. PARP1 recruits DNA translocases to restrain DNA replication and facilitate DNA repair. PLoS Genet. 18, e1010545 (2022).Article  CAS  PubMed  PubMed Central  Google Scholar Margalef, P. et al. Stabilization of reversed replication forks by telomerase drives telomere catastrophe. Cell 172, 439–453 (2018).Article  CAS  PubMed  PubMed Central  Google Scholar Ray Chaudhuri, A., Ahuja, A. K., Herrador, R. & Lopes, M. Poly(ADP-ribosyl) glycohydrolase prevents the accumulation of unusual replication structures during unperturbed S phase. Mol. Cell. Biol. 35, 856–865 (2015).Article  PubMed  PubMed Central  Google Scholar Wu, C. K. et al. APLF facilitates interstrand DNA crosslink repair and replication fork protection to confer cisplatin resistance. Nucleic Acids Res. 52, 5676–5697 (2024).Article  CAS  PubMed  PubMed Central  Google Scholar Hammel, M. et al. An intrinsically disordered APLF links Ku, DNA-PKcs, and XRCC4-DNA ligase IV in an extended flexible non-homologous end joining complex. J. Biol. Chem. 291, 26987–27006 (2016).Article  CAS  PubMed  PubMed Central  Google Scholar Patel, J. A. & Kim, H. The TIMELESS effort for timely DNA replication and protection. Cell. Mol. Life Sci. 80, 84 (2023).Article  CAS  PubMed  PubMed Central  Google Scholar Rageul, J. et al. Poly(ADP-ribosyl)ation of TIMELESS limits DNA replication stress and promotes stalled fork protection. Cell Rep. 43, 113845 (2024).Article  CAS  PubMed  PubMed Central  Google Scholar Haince, J. F. et al. PARP1-dependent kinetics of recruitment of MRE11 and NBS1 proteins to multiple DNA damage sites. J. Biol. Chem. 283, 1197–1208 (2008).Article  CAS  PubMed  Google Scholar Ding, X. et al. Synthetic viability by BRCA2 and PARP1/ARTD1 deficiencies. Nat. Commun. 7, 12425 (2016).Article  CAS  PubMed  PubMed Central  Google Scholar Petermann, E., Orta, M. L., Issaeva, N., Schultz, N. & Helleday, T. Hydroxyurea-stalled replication forks become progressively inactivated and require two different RAD51-mediated pathways for restart and repair. Mol. Cell 37, 492–502 (2010).Article  CAS  PubMed  PubMed Central  Google Scholar Zhang, F., Shi, J., Chen, S. H., Bian, C. & Yu, X. The PIN domain of EXO1 recognizes poly(ADP-ribose) in DNA damage response. Nucleic Acids Res. 43, 10782–10794 (2015).Article  CAS  PubMed  PubMed Central  Google Scholar Cheruiyot, A. et al. Poly(ADP-ribose)-binding promotes Exo1 damage recruitment and suppresses its nuclease activities. DNA Repair (Amst.) 35, 106–115 (2015).Article  CAS  PubMed  Google Scholar Ray Chaudhuri, A. et al. Replication fork stability confers chemoresistance in BRCA-deficient cells. Nature 535, 382–387 (2016).Article  PubMed  Google Scholar Dhoonmoon, A., Nicolae, C. M. & Moldovan, G. L. The KU-PARP14 axis differentially regulates DNA resection at stalled replication forks by MRE11 and EXO1. Nat. Commun. 13, 5063 (2022).Article  CAS  PubMed  PubMed Central  Google Scholar Paull, T. T. 20 years of Mre11 biology: no end in sight. Mol. Cell 71, 419–427 (2018).Article  CAS  PubMed  Google Scholar Qiu, S. & Huang, J. MRN complex is an essential effector of DNA damage repair. J. Zhejiang Univ. Sci. B 22, 31–37 (2021).Article  CAS  PubMed  PubMed Central  Google Scholar Carter-O’Connell, I. et al. Combining chemical genetics with proximity-dependent labeling reveals cellular targets of Poly(ADP-ribose) polymerase 14 (PARP14). ACS Chem. Biol. 13, 2841–2848 (2018).Article  PubMed  Google Scholar Kliza, K. W. et al. Reading ADP-ribosylation signaling using chemical biology and interaction proteomics. Mol. Cell 81, 4552–4567 (2021).Article  CAS  PubMed  Google Scholar Gu Kang, B. et al. Proteome-wide microarray-based screening of PAR-binding proteins. Nucleic Acids Res. 53, gkaf300 (2025).Article  PubMed  PubMed Central  Google Scholar Zhou, X. et al. UFMylation: a ubiquitin-like modification. Trends Biochem. Sci. 49, 52–67 (2024).Article  CAS  PubMed  Google Scholar Komatsu, M., Inada, T. & Noda, N. N. The UFM1 system: working principles, cellular functions, and pathophysiology. Mol. Cell 84, 156–169 (2024).Article  CAS  PubMed  Google Scholar Gong, Y. et al. PARP1 UFMylation ensures the stability of stalled replication forks. Proc. Natl Acad. Sci. USA 121, e2322520121 (2024).Article  CAS  PubMed  PubMed Central  Google Scholar Schlacher, K. et al. Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11. Cell 145, 529–542 (2011).Article  CAS  PubMed  PubMed Central  Google Scholar Schlacher, K., Wu, H. & Jasin, M. A distinct replication fork protection pathway connects Fanconi anemia tumor suppressors to RAD51-BRCA1/2. Cancer Cell 22, 106–116 (2012).Article  CAS  PubMed  PubMed Central  Google Scholar Liao, H., Ji, F., Helleday, T. & Ying, S. Mechanisms for stalled replication fork stabilization: new targets for synthetic lethality strategies in cancer treatments. EMBO Rep. 19, e46263 (2018).Article  PubMed  PubMed Central  Google Scholar Cybulla, E. & Vindigni, A. Leveraging the replication stress response to optimize cancer therapy. Nat. Rev. Cancer 23, 6–24 (2023).Article  CAS  PubMed  Google Scholar Cho, Y. W. et al. PTIP associates with MLL3- and MLL4-containing histone H3 lysine 4 methyltransferase complex. J. Biol. Chem. 282, 20395–20406 (2007).Article  CAS  PubMed  Google Scholar Tian, T. et al. UFL1 triggers replication fork degradation by MRE11 in BRCA1/2-deficient cells. Nat. Chem. Biol. 20, 1650–1661 (2024).Article  CAS  PubMed  Google Scholar Tan, Q. & Xu, X. PTIP UFMylation promotes replication fork degradation in BRCA1-deficient cells. J. Biol. Chem. 300, 107312 (2024).Article  CAS  PubMed  PubMed Central  Google Scholar Wang, Z. et al. MRE11 UFMylation promotes ATM activation. Nucleic Acids Res. 47, 4124–4135 (2019).Article  CAS  PubMed  PubMed Central  Google Scholar Qin, B. et al. STK38 promotes ATM activation by acting as a reader of histone H4 UFMylation. Sci. Adv. 6, eaax8214 (2020).Article  CAS  PubMed  PubMed Central  Google Scholar Patel, S. R., Kim, D., Levitan, I. & Dressler, G. R. The BRCT-domain containing protein PTIP links PAX2 to a histone H3, lysine 4 methyltransferase complex. Dev. Cell 13, 580–592 (2007).Article  CAS  PubMed  PubMed Central  Google Scholar Starnes, L. M. et al. A PTIP–PA1 subcomplex promotes transcription for IgH class switching independently from the associated MLL3/MLL4 methyltransferase complex. Genes Dev. 30, 149–163 (2016).Article  CAS  PubMed  PubMed Central  Google Scholar Tan, Q. & Xu, X. MUS81 UFMylation at K400 promotes cell survival in response to camptothecin-induced replication stress. Genome Instab. Dis. 5, 154–163 (2024).Article  CAS  Google Scholar Hsu, C. L., Chong, S. Y., Lin, C. Y. & Kao, C. F. Histone dynamics during DNA replication stress. J. Biomed. Sci. 28, 48 (2021).Article  CAS  PubMed  PubMed Central  Google Scholar Greer, E. L. & Shi, Y. Histone methylation: a dynamic mark in health, disease and inheritance. Nat. Rev. Genet. 13, 343–357 (2012).Article  CAS  PubMed  PubMed Central  Google Scholar Zhu, Q. et al. SETD2-mediated H3K14 trimethylation promotes ATR activation and stalled replication fork restart in response to DNA replication stress. Proc. Natl Acad. Sci. USA 118, e2011278118 (2021).Article  CAS  PubMed  PubMed Central  Google Scholar McDaniel, S. L. & Strahl, B. D. Shaping the cellular landscape with Set2/SETD2 methylation. Cell. Mol. Life Sci. 74, 3317–3334 (2017).Article  CAS  PubMed  PubMed Central  Google Scholar Liu, H. et al. Phosphorylation of MLL by ATR is required for execution of mammalian S-phase checkpoint. Nature 467, 343–346 (2010).Article  CAS  PubMed  PubMed Central  Google Scholar Higgs, M. R. et al. Histone methylation by SETD1A protects nascent DNA through the nucleosome chaperone activity of FANCD2. Mol. Cell 71, 25–41 (2018).Article  CAS  PubMed  PubMed Central  Google Scholar Gaggioli, V. et al. Dynamic de novo heterochromatin assembly and disassembly at replication forks ensures fork stability. Nat. Cell Biol. 25, 1017–1032 (2023).Article  CAS  PubMed  PubMed Central  Google Scholar Wang, L. et al. Histone modifications regulate chromatin compartmentalization by contributing to a phase separation mechanism. Mol. Cell 76, 646–659 (2019).Article  CAS  PubMed  Google Scholar Li, X., Liu, C., Lei, Z., Chen, H. & Wang, L. Phase-separated chromatin compartments: orchestrating gene expression through condensation. Cell Insight 3, 100213 (2024).Article  PubMed  PubMed Central  Google Scholar Lee, J. E. et al. H3K4 mono- and di-methyltransferase MLL4 is required for enhancer activation during cell differentiation. eLife 2, e01503 (2013).Article  PubMed  PubMed Central  Google Scholar Muñoz, I. M. & Rouse, J. Control of histone methylation and genome stability by PTIP. EMBO Rep. 10, 239–245 (2009).Article  PubMed  PubMed Central  Google Scholar Rondinelli, B. et al. EZH2 promotes degradation of stalled replication forks by recruiting MUS81 through histone H3 trimethylation. Nat. Cell Biol. 19, 1371–1378 (2017).Article  CAS  PubMed  Google Scholar Przetocka, S. et al. CtIP-mediated fork protection synergizes with BRCA1 to suppress genomic instability upon DNA replication stress. Mol. Cell 72, 568–582 (2018).Article  CAS  PubMed  Google Scholar Wang, M. et al. Crucial roles of the BRCA1–BARD1 E3 ubiquitin ligase activity in homology-directed DNA repair. Mol. Cell 83, 3679–3691 (2023).Article  CAS  PubMed  PubMed Central  Google Scholar Jiang, L., Huang, L. & Jiang, W. H3K27me3-mediated epigenetic regulation in pluripotency maintenance and lineage differentiation. Cell Insight 3, 100180 (2024).Article  PubMed  PubMed Central  Google Scholar Lee, M. G. et al. Demethylation of H3K27 regulates polycomb recruitment and H2A ubiquitination. Science 318, 447–450 (2007).Article  CAS  PubMed  Google Scholar Wu, J. et al. KDM6A-SND1 interaction maintains genomic stability by protecting the nascent DNA and contributes to cancer chemoresistance. Nucleic Acids Res. 52, 7665–7686 (2024).Article  CAS  PubMed  PubMed Central  Google Scholar Kim, J. J. et al. PCAF-mediated histone acetylation promotes replication fork degradation by MRE11 and EXO1 in BRCA-deficient cells. Mol. Cell 80, 327–344 (2020).Article  CAS  PubMed  PubMed Central  Google Scholar Taglialatela, A. et al. Restoration of replication fork stability in BRCA1- and BRCA2-deficient cells by inactivation of SNF2-family fork remodelers. Mol. Cell 68, 414–430 (2017).Article  CAS  PubMed  PubMed Central  Google Scholar Kolinjivadi, A. M. et al. SMARCAL1-mediated fork reversal triggers Mre11-dependent degradation of nascent DNA in the absence of Brca2 and stable Rad51 nucleofilaments. Mol. Cell 67, 867–881 (2017).Article  CAS  PubMed  PubMed Central  Google Scholar Muñoz, S. et al. SIN3A histone deacetylase action counteracts MUS81 to promote stalled fork stability. Cell Rep. 43, 113778 (2024).Article  PubMed  PubMed Central  Google Scholar Andronikou, C. & Rottenberg, S. Studying PAR-dependent chromatin remodeling to tackle PARPi resistance. Trends Mol. Med. 27, 630–642 (2021).Article  CAS  PubMed  Google Scholar Zentout, S. et al. Histone ADP-ribosylation promotes resistance to PARP inhibitors by facilitating PARP1 release from DNA lesions. Proc. Natl Acad. Sci. USA 121, e2322689121 (2024).Article  CAS  PubMed  PubMed Central  Google Scholar Da Costa, A., Chowdhury, D., Shapiro, G. I., D’Andrea, A. D. & Konstantinopoulos, P. A. Targeting replication stress in cancer therapy. Nat. Rev. Drug Discov. 22, 38–58 (2023).Article  PubMed  Google Scholar Pfister, S. X. et al. Inhibiting WEE1 selectively kills histone H3K36me3-deficient cancers by dNTP starvation. Cancer Cell 28, 557–568 (2015).Article  CAS  PubMed  PubMed Central  Google Scholar Pillay, N. et al. DNA replication vulnerabilities render ovarian cancer cells sensitive to poly(ADP-ribose) glycohydrolase inhibitors. Cancer Cell 35, 519–533 (2019).Article  CAS  PubMed  PubMed Central  Google Scholar Baillie, K. E. & Stirling, P. C. Beyond kinases: targeting replication stress proteins in cancer therapy. Trends Cancer 7, 430–446 (2021).Article  CAS  PubMed  Google Scholar Wu, Z., Liu, Y., Zhang, M. & Wang, D. Emerging posttranslational modifications and their roles in DNA damage response. Genome Instab. Dis. 5, 1–16 (2024).Article  CAS  Google Scholar Dai, E., Wang, W., Li, Y., Ye, D. & Li, Y. Lactate and lactylation: behind the development of tumors. Cancer Lett. 591, 216896 (2024).Article  CAS  PubMed  Google Scholar Bergers, G. & Fendt, S. M. The metabolism of cancer cells during metastasis. Nat. Rev. Cancer 21, 162–180 (2021).Article  CAS  PubMed  PubMed Central  Google Scholar Zhang, Y. et al. The function and mechanism of lactate and lactylation in tumor metabolism and microenvironment. Genes Dis. 10, 2029–2037 (2023).Article  CAS  PubMed  Google Scholar Zecha, J. et al. Decrypting drug actions and protein modifications by dose- and time-resolved proteomics. Science 380, 93–101 (2023).Article  CAS  PubMed  PubMed Central  Google Scholar Rosenberger, F. A. et al. Spatial single-cell mass spectrometry defines zonation of the hepatocyte proteome. Nat. Methods 20, 1530–1536 (2023).Article  CAS  PubMed  PubMed Central  Google Scholar Zhai, Y. et al. Spatiotemporal-resolved protein networks profiling with photoactivation dependent proximity labeling. Nat. Commun. 13, 4906 (2022).Article  CAS  PubMed  PubMed Central  Google Scholar Ctortecka, C. et al. Automated single-cell proteomics providing sufficient proteome depth to study complex biology beyond cell type classifications. Nat. Commun. 15, 5707 (2024).Article  CAS  PubMed  PubMed Central  Google Scholar Muneer, G. et al. Mapping nanoscale-to-single-cell phosphoproteomic landscape by Chip-DIA. Adv. Sci. (Weinh.) 12, e2402421 (2025).PubMed  Google Scholar