Mechanisms of transcription-coupled repair and DNA damage surveillance in health and disease

Wait 5 sec.

Farnung, L. & Vos, S. M. Assembly of RNA polymerase II transcription initiation complexes. Curr. Opin. Struct. Biol. 73, 102335 (2022).PubMed  PubMed Central  Google Scholar Chen, F. X., Smith, E. R. & Shilatifard, A. Born to run: control of transcription elongation by RNA polymerase II. Nat. Rev. Mol. Cell Biol. 19, 464–478 (2018).PubMed  Google Scholar Zhou, Q., Li, T. & Price, D. H. RNA polymerase II elongation control. Annu. Rev. Biochem. 81, 119–143 (2012).PubMed  PubMed Central  Google Scholar Noe Gonzalez, M., Blears, D. & Svejstrup, J. Q. Causes and consequences of RNA polymerase II stalling during transcript elongation. Nat. Rev. Mol. Cell Biol. 22, 3–21 (2021).PubMed  Google Scholar Lans, H., Hoeijmakers, J. H. J., Vermeulen, W. & Marteijn, J. A. The DNA damage response to transcription stress. Nat. Rev. Mol. Cell Biol. 20, 766–784 (2019).PubMed  Google Scholar Brueckner, F., Hennecke, U., Carell, T. & Cramer, P. CPD damage recognition by transcribing RNA polymerase II. Science 315, 859–862 (2007).PubMed  Google Scholar Damsma, G. E., Alt, A., Brueckner, F., Carell, T. & Cramer, P. Mechanism of transcriptional stalling at cisplatin-damaged DNA. Nat. Struct. Mol. Biol. 14, 1127–1133 (2007).PubMed  Google Scholar Vermeij, W. P., Hoeijmakers, J. H. & Pothof, J. Aging: not all DNA damage is equal. Curr. Opin. Genet. Dev. 26, 124–130 (2014).PubMed  Google Scholar Gregersen, L. H. & Svejstrup, J. Q. The cellular response to transcription-blocking DNA damage. Trends Biochem. Sci. 43, 327–341 (2018).PubMed  PubMed Central  Google Scholar Mei Kwei, J. S. et al. Blockage of RNA polymerase II at a cyclobutane pyrimidine dimer and 6-4 photoproduct. Biochem. Biophys. Res. Commun. 320, 1133–1138 (2004).PubMed  Google Scholar Mulderrig, L. et al. Aldehyde-driven transcriptional stress triggers an anorexic DNA damage response. Nature 600, 158–163 (2021).PubMed  Google Scholar van Sluis, M. et al. Transcription-coupled DNA-protein crosslink repair by CSB and CRL4(CSA)-mediated degradation. Nat. Cell Biol. 26, 770–783 (2024).PubMed  PubMed Central  Google Scholar Weickert, P. & Stingele, J. DNA-protein crosslinks and their resolution. Annu. Rev. Biochem. 91, 157–181 (2022).PubMed  Google Scholar Rieckher, M. et al. Distinct DNA repair mechanisms prevent formaldehyde toxicity during development, reproduction and aging. Nucleic Acids Res. 52, 8271–8285 (2024).PubMed  PubMed Central  Google Scholar Oka, Y., Nakazawa, Y., Shimada, M. & Ogi, T. Endogenous aldehyde-induced DNA-protein crosslinks are resolved by transcription-coupled repair. Nat. Cell Biol. 26, 784–796 (2024).PubMed  PubMed Central  Google Scholar Carnie, C. J. et al. Transcription-coupled repair of DNA-protein cross-links depends on CSA and CSB. Nat. Cell Biol. 26, 797–810 (2024).PubMed  PubMed Central  Google Scholar Geijer, M. E. & Marteijn, J. A. What happens at the lesion does not stay at the lesion: transcription-coupled nucleotide excision repair and the effects of DNA damage on transcription in cis and trans. DNA Repair 71, 56–68 (2018).PubMed  Google Scholar Giono, L. E. et al. The RNA response to DNA damage. J. Mol. Biol. 428, 2636–2651 (2016).PubMed  Google Scholar Hanawalt, P. C. & Spivak, G. Transcription-coupled DNA repair: two decades of progress and surprises. Nat. Rev. Mol. Cell Biol. 9, 958–970 (2008).PubMed  Google Scholar Tornaletti, S. Transcription arrest at DNA damage sites. Mutat. Res. 577, 131–145 (2005).PubMed  Google Scholar Rieckher, M., Garinis, G. A. & Schumacher, B. Molecular pathology of rare progeroid diseases. Trends Mol. Med. 27, 907–922 (2021).PubMed  Google Scholar Paniagua, I. & Jacobs, J. J. L. Freedom to err: the expanding cellular functions of translesion DNA polymerases. Mol. Cell 83, 3608–3621 (2023).PubMed  Google Scholar Mellon, I., Spivak, G. & Hanawalt, P. C. Selective removal of transcription-blocking DNA damage from the transcribed strand of the mammalian DHFR gene. Cell 51, 241–249 (1987).PubMed  Google Scholar Bohr, V. A., Smith, C. A., Okumoto, D. S. & Hanawalt, P. C. DNA repair in an active gene: removal of pyrimidine dimers from the DHFR gene of CHO cells is much more efficient than in the genome overall. Cell 40, 359–369 (1985).PubMed  Google Scholar Ganesan, A., Spivak, G. & Hanawalt, P. C. Transcription-coupled DNA repair in prokaryotes. Prog. Mol. Biol. Transl. Sci. 110, 25–40 (2012).PubMed  Google Scholar Li, S. Transcription coupled nucleotide excision repair in the yeast saccharomyces cerevisiae: the ambiguous role of Rad26. DNA Repair 36, 43–48 (2015).PubMed  Google Scholar Edifizi, D. & Schumacher, B. Genome instability in development and aging: insights from nucleotide excision repair in humans, mice, and worms. Biomolecules 5, 1855–1869 (2015).PubMed  PubMed Central  Google Scholar Laugel, V. Cockayne syndrome: the expanding clinical and mutational spectrum. Mech. Ageing Dev. 134, 161–170 (2013).PubMed  Google Scholar Troelstra, C. et al. ERCC6, a member of a subfamily of putative helicases, is involved in Cockayne’s syndrome and preferential repair of active genes. Cell 71, 939–953 (1992).PubMed  Google Scholar Henning, K. A. et al. The Cockayne syndrome group a gene encodes a WD repeat protein that interacts with CSB protein and a subunit of RNA polymerase II TFIIH. Cell 82, 555–564 (1995).PubMed  Google Scholar Sarsam, R. D. et al. Elf1 promotes Rad26’s interaction with lesion-arrested Pol II for transcription-coupled repair. Proc. Natl Acad. Sci. USA 121, e2314245121 (2024).PubMed  PubMed Central  Google Scholar Oh, J., Xu, J., Chong, J. & Wang, D. Molecular basis of transcriptional pausing, stalling, and transcription-coupled repair initiation. Biochim. Biophys. Acta Gene Regul. Mech. 1864, 194659 (2020).PubMed  PubMed Central  Google Scholar van den Heuvel, D. et al. STK19 facilitates the clearance of lesion-stalled RNAPII during transcription-coupled DNA repair. Cell 187, 7107–7125.e7125 (2024).PubMed  PubMed Central  Google Scholar Mevissen, T. E. T., Kummecke, M., Schmid, E. W., Farnung, L. & Walter, J. C. STK19 positions TFIIH for cell-free transcription-coupled DNA repair. Cell 187, 7091–7106.e7024 (2024).PubMed  PubMed Central  Google Scholar Ramadhin, A. R. et al. STK19 drives transcription-coupled repair by stimulating repair complex stability, RNA Pol II ubiquitylation, and TFIIH recruitment. Mol. Cell 84, 4740–4757.e4712 (2024).PubMed  Google Scholar Kokic, G. et al. Structural basis for RNA polymerase II ubiquitylation and inactivation in transcription-coupled repair. Nat. Struct. Mol. Biol. 31, 536–547 (2024).PubMed  PubMed Central  Google Scholar Kokic, G., Wagner, F. R., Chernev, A., Urlaub, H. & Cramer, P. Structural basis of human transcription–DNA repair coupling. Nature 598, 368–372 (2021).PubMed  PubMed Central  Google Scholar Tufegdžić Vidaković, A. et al. Regulation of the RNAPII pool is integral to the DNA damage response. Cell 180, 1245–1261.e1221 (2020).PubMed  PubMed Central  Google Scholar Nakazawa, Y. et al. Ubiquitination of DNA damage-stalled RNAPII promotes transcription-coupled repair. Cell 180, 1228–1244.e1224 (2020).PubMed  Google Scholar Gonzalo-Hansen, C. et al. Differential processing of RNA polymerase II at DNA damage correlates with transcription-coupled repair syndrome severity. Nucleic Acids Res. 52, 9596–9612 (2024).PubMed  PubMed Central  Google Scholar Zhu, Y. et al. Coordination of transcription-coupled repair and repair-independent release of lesion-stalled RNA polymerase II. Nat. Commun. 15, 7089 (2024).PubMed  PubMed Central  Google Scholar Saxowsky, T. T. & Doetsch, P. W. RNA polymerase encounters with DNA damage: transcription-coupled repair or transcriptional mutagenesis? Chem. Rev. 106, 474–488 (2006).PubMed  Google Scholar Wang, W., Xu, J., Chong, J. & Wang, D. Structural basis of DNA lesion recognition for eukaryotic transcription-coupled nucleotide excision repair. DNA Repair 71, 43–55 (2018).PubMed  PubMed Central  Google Scholar van den Heuvel, D., van der Weegen, Y., Boer, D. E. C., Ogi, T. & Luijsterburg, M. S. Transcription-coupled DNA repair: from mechanism to human disorder. Trends Cell Biol. 31, 359–371 (2021).PubMed  Google Scholar Jia, N. et al. Dealing with transcription-blocking DNA damage: repair mechanisms, RNA polymerase II processing and human disorders. DNA Repair 106, 103192 (2021).PubMed  Google Scholar Lahiri, I. et al. 3.1Å structure of yeast RNA polymerase II elongation complex stalled at a cyclobutane pyrimidine dimer lesion solved using streptavidin affinity grids. J. Struct. Biol. 207, 270–278 (2019).PubMed  PubMed Central  Google Scholar Wang, D., Zhu, G., Huang, X. & Lippard, S. J. X-ray structure and mechanism of RNA polymerase II stalled at an antineoplastic monofunctional platinum-DNA adduct. Proc. Natl Acad. Sci. USA 107, 9584–9589 (2010).PubMed  PubMed Central  Google Scholar Kellinger, M. W., Park, G. Y., Chong, J., Lippard, S. J. & Wang, D. Effect of a monofunctional phenanthriplatin-DNA adduct on RNA polymerase II transcriptional fidelity and translesion synthesis. J. Am. Chem. Soc. 135, 13054–13061 (2013).PubMed  PubMed Central  Google Scholar Wang, W., Walmacq, C., Chong, J., Kashlev, M. & Wang, D. Structural basis of transcriptional stalling and bypass of abasic DNA lesion by RNA polymerase II. Proc. Natl Acad. Sci. USA 115, E2538–E2545 (2018).PubMed  PubMed Central  Google Scholar Walmacq, C. et al. Mechanism of RNA polymerase II bypass of oxidative cyclopurine DNA lesions. Proc. Natl Acad. Sci. USA 112, E410–E419 (2015).PubMed  PubMed Central  Google Scholar Xu, J. et al. Structural basis for the initiation of eukaryotic transcription-coupled DNA repair. Nature 551, 653–657 (2017).PubMed  PubMed Central  Google Scholar Malvezzi, S. et al. Mechanism of RNA polymerase II stalling by DNA alkylation. Proc. Natl Acad. Sci. USA 114, 12172 (2017).PubMed  PubMed Central  Google Scholar Gao, S., Hou, P., Oh, J., Wang, D. & Greenberg, M. M. Molecular mechanism of RNA polymerase II transcriptional mutagenesis by the epimerizable DNA lesion, Fapy·dG. J. Am. Chem. Soc. 146, 6274–6282 (2024).PubMed  PubMed Central  Google Scholar Oh, J. et al. RNA polymerase II stalls on oxidative DNA damage via a torsion-latch mechanism involving lone pair-pi and CH-pi interactions. Proc. Natl Acad. Sci. USA 117, 9338–9348 (2020).PubMed  PubMed Central  Google Scholar Son, K. et al. Trabectedin derails transcription-coupled nucleotide excision repair to induce DNA breaks in highly transcribed genes. Nat. Commun. 15, 1388 (2024).PubMed  PubMed Central  Google Scholar Mao, P., Smerdon, M. J., Roberts, S. A. & Wyrick, J. J. Chromosomal landscape of UV damage formation and repair at single-nucleotide resolution. Proc. Natl Acad. Sci. USA 113, 9057–9062 (2016).PubMed  PubMed Central  Google Scholar Hu, J., Adar, S., Selby, C. P., Lieb, J. D. & Sancar, A. Genome-wide analysis of human global and transcription-coupled excision repair of UV damage at single-nucleotide resolution. Genes. Dev. 29, 948–960 (2015).PubMed  PubMed Central  Google Scholar Lainé, J.-P. & Egly, J.-M. Initiation of DNA repair mediated by a stalled RNA polymerase IIO. EMBO J. 25, 387 (2006).PubMed  PubMed Central  Google Scholar van Gool, A. J. et al. RAD26, the functional S. cerevisiae homolog of the Cockayne syndrome B gene ERCC6. EMBO J. 13, 5361–5369 (1994).PubMed  PubMed Central  Google Scholar Tantin, D., Kansal, A. & Carey, M. Recruitment of the putative transcription-repair coupling factor CSB/ERCC6 to RNA polymerase II elongation complexes. Mol. Cell. Biol. 17, 6803–6814 (1997).PubMed  PubMed Central  Google Scholar Selby, C. P. & Sancar, A. Cockayne syndrome group B protein enhances elongation by RNA polymerase II. Proc. Natl Acad. Sci. USA 94, 11205–11209 (1997).PubMed  PubMed Central  Google Scholar Selby, C. P. & Sancar, A. Human transcription-repair coupling factor CSB/ERCC6 is a DNA-stimulated ATPase but is not a helicase and does not disrupt the ternary transcription complex of stalled RNA polymerase II. J. Biol. Chem. 272, 1885–1890 (1997).PubMed  Google Scholar van Gool, A. J. et al. The Cockayne syndrome B protein, involved in transcription-coupled DNA repair, resides in an RNA polymerase II-containing complex. EMBO J. 16, 5955–5965 (1997).PubMed  PubMed Central  Google Scholar Eisen, J. A., Sweder, K. S. & Hanawalt, P. C. Evolution of the SNF2 family of proteins: subfamilies with distinct sequences and functions. Nucleic Acids Res. 23, 2715–2723 (1995).PubMed  PubMed Central  Google Scholar Wang, W. et al. Molecular basis of chromatin remodeling by Rhp26, a yeast CSB ortholog. Proc. Natl Acad. Sci. USA 116, 6120–6129 (2019).PubMed  PubMed Central  Google Scholar Citterio, E. et al. ATP-dependent chromatin remodeling by the Cockayne syndrome B DNA repair-transcription-coupling factor. Mol. Cell. Biol. 20, 7643–7653 (2000).PubMed  PubMed Central  Google Scholar Citterio, E. et al. Biochemical and biological characterization of wild-type and ATPase-deficient Cockayne syndrome B repair protein. J. Biol. Chem. 273, 11844–11851 (1998).PubMed  Google Scholar Lee, J. Y. et al. NAP1L1 accelerates activation and decreases pausing to enhance nucleosome remodeling by CSB. Nucleic Acids Res. 45, 4696–4707 (2017).PubMed  PubMed Central  Google Scholar Xu, L. et al. Mechanism of DNA alkylation-induced transcriptional stalling, lesion bypass, and mutagenesis. Proc. Natl Acad. Sci. USA 114, E7082–E7091 (2017).PubMed  PubMed Central  Google Scholar Yan, C. et al. Mechanism of Rad26-assisted rescue of stalled RNA polymerase II in transcription-coupled repair. Nat. Commun. 12, 7001 (2021).PubMed  PubMed Central  Google Scholar Xu, J., Chong, J. & Wang, D. Strand-specific effect of Rad26 and TFIIS in rescuing transcriptional arrest by CAG trinucleotide repeat slip-outs. Nucleic Acids Res. 49, 7618–7627 (2021).PubMed  PubMed Central  Google Scholar van den Boom, V. et al. DNA damage stabilizes interaction of CSB with the transcription elongation machinery. J. Cell Biol. 166, 27–36 (2004).PubMed  PubMed Central  Google Scholar Zhou, D., Yu, Q., Janssens, R. C., Marteijn, J. A. Live-cell imaging of endogenous CSB-mScarletI as a sensitive marker for DNA damage-induced transcription stress. Cell Rep. Methods 4, 100674 (2024).PubMed  PubMed Central  Google Scholar Kokic, G. et al. Structural basis of TFIIH activation for nucleotide excision repair. Nat. Commun. 10, 2885 (2019).PubMed  PubMed Central  Google Scholar Jansen, L. E. T. et al. Spt4 modulates Rad26 requirement in transcription-coupled nucleotide excision repair. EMBO J. 19, 6498 (2000).PubMed  PubMed Central  Google Scholar Li, W., Giles, C. & Li, S. Insights into how Spt5 functions in transcription elongation and repressing transcription coupled DNA repair. Nucleic Acids Res. 42, 7069 (2014).PubMed  PubMed Central  Google Scholar Tiwari, V., Kulikowicz, T., Wilson, D. M. 3rd & Bohr, V. A. LEO1 is a partner for Cockayne syndrome protein B (CSB) in response to transcription-blocking DNA damage. Nucleic Acids Res. 49, 6331–6346 (2021).PubMed  PubMed Central  Google Scholar Boeing, S. et al. Multiomic analysis of the UV-induced DNA damage response. Cell Rep. 15, 1597–1610 (2016).PubMed  PubMed Central  Google Scholar van der Weegen, Y. et al. The cooperative action of CSB, CSA, and UVSSA target TFIIH to DNA damage-stalled RNA polymerase II. Nat. Commun. 11, 2104 (2020).PubMed  PubMed Central  Google Scholar Schwertman, P. et al. UV-sensitive syndrome protein UVSSA recruits USP7 to regulate transcription-coupled repair. Nat. Genet. 44, 598–602 (2012).PubMed  Google Scholar Wienholz, F. et al. FACT subunit Spt16 controls UVSSA recruitment to lesion-stalled RNA Pol II and stimulates TC-NER. Nucleic Acids Res. 47, 4011–4025 (2019).PubMed  PubMed Central  Google Scholar Geijer, M. E. et al. Elongation factor ELOF1 drives transcription-coupled repair and prevents genome instability. Nat. Cell Biol. 23, 608–619 (2021).PubMed  PubMed Central  Google Scholar van der Weegen, Y. et al. ELOF1 is a transcription-coupled DNA repair factor that directs RNA polymerase II ubiquitylation. Nat. Cell Biol. 23, 595–607 (2021).PubMed  PubMed Central  Google Scholar Fei, J. & Chen, J. KIAA1530 protein is recruited by Cockayne syndrome complementation group protein A (CSA) to participate in transcription-coupled repair (TCR). J. Biol. Chem. 287, 35118–35126 (2012).PubMed  PubMed Central  Google Scholar Nakazawa, Y. et al. Mutations in UVSSA cause UV-sensitive syndrome and impair RNA polymerase IIo processing in transcription-coupled nucleotide-excision repair. Nat. Genet. 44, 586–592 (2012).PubMed  Google Scholar Luo, Y. et al. The ARK2N-CK2 complex initiates transcription-coupled repair through enhancing the interaction of CSB with lesion-stalled RNAPII. Proc. Natl Acad. Sci. USA 121, e2404383121 (2024).PubMed  PubMed Central  Google Scholar van Schie, J. J. M., Brussee, S. J. & Luijsterburg, M. S. Evidence that ARK2N is not a core factor in transcription-coupled DNA repair. Proc. Natl Acad. Sci. USA 122, e2425178122 (2025).PubMed  PubMed Central  Google Scholar Aydin, O. Z. et al. Human ISWI complexes are targeted by SMARCA5 ATPase and SLIDE domains to help resolve lesion-stalled transcription. Nucleic Acids Res. 42, 8473–8485 (2014).PubMed  PubMed Central  Google Scholar Groisman, R. et al. The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage. Cell 113, 357–367 (2003).PubMed  Google Scholar Fischer, E. S. et al. The molecular basis of CRL4DDB2/CSA ubiquitin ligase architecture, targeting, and activation. Cell 147, 1024–1039 (2011).PubMed  Google Scholar Llerena Schiffmacher, D. A. et al. The small CRL4(CSA) ubiquitin ligase component DDA1 regulates transcription-coupled repair dynamics. Nat. Commun. 15, 6374 (2024).PubMed  PubMed Central  Google Scholar Pines, A. et al. TRiC controls transcription resumption after UV damage by regulating Cockayne syndrome protein A. Nat. Commun. 9, 1040 (2018).PubMed  PubMed Central  Google Scholar Cavadini, S. et al. Cullin-RING ubiquitin E3 ligase regulation by the COP9 signalosome. Nature 531, 598–603 (2016).PubMed  Google Scholar Higa, M., Tanaka, K. & Saijo, M. Inhibition of UVSSA ubiquitination suppresses transcription-coupled nucleotide excision repair deficiency caused by dissociation from USP7. FEBS J. 285, 965–976 (2018).PubMed  Google Scholar Zhang, X. et al. Mutations in UVSSA cause UV-sensitive syndrome and destabilize ERCC6 in transcription-coupled DNA repair. Nat. Genet. 44, 593–597 (2012).PubMed  Google Scholar Zhu, Q. et al. USP7-mediated deubiquitination differentially regulates CSB but not UVSSA upon UV radiation-induced DNA damage. Cell Cycle 19, 124–141 (2020).PubMed  Google Scholar Groisman, R. et al. CSA-dependent degradation of CSB by the ubiquitin–proteasome pathway establishes a link between complementation factors of the Cockayne syndrome. Genes. Dev. 20, 1429–1434 (2006).PubMed  PubMed Central  Google Scholar Rodriguez-Martinez, M. et al. Evidence tat STK19 is not an NRAS-dependent melanoma driver. Cell 181, 1395–1405.e1311 (2020).PubMed  PubMed Central  Google Scholar Li, Y. et al. STK19 is a DNA/RNA-binding protein critical for DNA damage repair and cell proliferation. J. Cell Biol. 223, e202301090 (2024).PubMed  PubMed Central  Google Scholar Tan, Y. et al. STK19 is a transcription-coupled repair factor that participates in UVSSA ubiquitination and TFIIH loading. Nucleic Acids Res. 52, 12767–12783 (2024).PubMed  PubMed Central  Google Scholar Mark, K. G. & Rape, M. Ubiquitin-dependent regulation of transcription in development and disease. EMBO Rep. 22, e51078 (2021).PubMed  PubMed Central  Google Scholar Wilson, M. D., Harreman, M. & Svejstrup, J. Q. Ubiquitylation and degradation of elongating RNA polymerase II: the last resort. Biochim. Biophys. Acta 1829, 151–157 (2013).PubMed  Google Scholar Theil, A. F., Hackes, D. & Lans, H. TFIIH central activity in nucleotide excision repair to prevent disease. DNA Repair 132, 103568 (2023).PubMed  Google Scholar Kim, J. et al. Lesion recognition by XPC, TFIIH and XPA in DNA excision repair. Nature 617, 170–175 (2023).PubMed  PubMed Central  Google Scholar Li, C. L. et al. Tripartite DNA lesion recognition and verification by XPC, TFIIH, and XPA in nucleotide excision repair. Mol. Cell 59, 1025–1034 (2015).PubMed  PubMed Central  Google Scholar Okuda, M., Nakazawa, Y., Guo, C., Ogi, T. & Nishimura, Y. Common TFIIH recruitment mechanism in global genome and transcription-coupled repair subpathways. Nucleic Acids Res. 45, 13043–13055 (2017).PubMed  PubMed Central  Google Scholar Selvam, K. et al. Elf1 promotes transcription-coupled repair in yeast by using its C-terminal domain to bind TFIIH. Nat. Commun. 15, 6223 (2024).PubMed  PubMed Central  Google Scholar Sarker, A. H. et al. Recognition of RNA polymerase II and transcription bubbles by XPG, CSB, and TFIIH: insights for transcription-coupled repair and Cockayne Syndrome. Mol. Cell 20, 187–198 (2005).PubMed  Google Scholar Mullenders, L. DNA damage mediated transcription arrest: step back to go forward. DNA Repair 36, 28–35 (2015).PubMed  Google Scholar Nudler, E. RNA polymerase backtracking in gene regulation and genome instability. Cell 149, 1438–1445 (2012).PubMed  Google Scholar Chiou, Y. Y., Hu, J., Sancar, A. & Selby, C. P. RNA polymerase II is released from the DNA template during transcription-coupled repair in mammalian cells. J. Biol. Chem. 293, 2476–2486 (2018).PubMed  Google Scholar Hara, R., Selby, C. P., Liu, M., Price, D. H. & Sancar, A. Human transcription release factor 2 dissociates RNA polymerases I and II stalled at a cyclobutane thymine dimer. J. Biol. Chem. 274, 24779–24786 (1999).PubMed  Google Scholar van der Meer, P. J., Yakoub, G., Nakazawa, Y., Ogi, T. & Luijsterburg, M. S. Clearance of DNA damage-arrested RNAPII is selectively impaired in Cockayne syndrome cells. Preprint at bioRxiv https://doi.org/10.1101/2024.05.17.594644 (2024).He, J., Zhu, Q., Wani, G. & Wani, A. A. UV-induced proteolysis of RNA polymerase II is mediated by VCP/p97 segregase and timely orchestration by Cockayne syndrome B protein. Oncotarget 8, 11004–11019 (2017).PubMed  Google Scholar Verma, R., Oania, R., Fang, R., Smith, G. T. & Deshaies, R. J. Cdc48/p97 mediates UV-dependent turnover of RNA Pol II. Mol. Cell 41, 82–92 (2011).PubMed  PubMed Central  Google Scholar Steurer, B. et al. DNA damage-induced transcription stress triggers the genome-wide degradation of promoter-bound Pol II. Nat. Commun. 13, 3624 (2022).PubMed  PubMed Central  Google Scholar Yasukawa, T. et al. Mammalian elongin a complex mediates DNA-damage-induced ubiquitylation and degradation of Rpb1. EMBO J. 27, 3256–3266 (2008).PubMed  PubMed Central  Google Scholar Kuznetsova, A. V. et al. Von hippel-lindau protein binds hyperphosphorylated large subunit of RNA polymerase II through a proline hydroxylation motif and targets it for ubiquitination. Proc. Natl Acad. Sci. USA 100, 2706–2711 (2003).PubMed  PubMed Central  Google Scholar Starita, L. M. et al. BRCA1/BARD1 ubiquitinate phosphorylated RNA polymerase II. J. Biol. Chem. 280, 24498–24505 (2005).PubMed  Google Scholar Brzovic, P. S., Lissounov, A., Christensen, D. E., Hoyt, D. W. & Klevit, R. E. A UbcH5/ubiquitin noncovalent complex is required for processive BRCA1-directed ubiquitination. Mol. Cell 21, 873–880 (2006).PubMed  Google Scholar Anindya, R., Aygun, O. & Svejstrup, J. Q. Damage-induced ubiquitylation of human RNA polymerase II by the ubiquitin ligase Nedd4, but not Cockayne syndrome proteins or BRCA1. Mol. Cell 28, 386–397 (2007).PubMed  Google Scholar Bharati, B. K. et al. Crucial role and mechanism of transcription-coupled DNA repair in bacteria. Nature 604, 152–159 (2022).PubMed  PubMed Central  Google Scholar Higa, M., Zhang, X., Tanaka, K. & Saijo, M. Stabilization of ultraviolet (UV)-stimulated scaffold protein a by interaction with ubiquitin-specific peptidase 7 is essential for transcription-coupled nucleotide excision repair. J. Biol. Chem. 291, 13771–13779 (2016).PubMed  PubMed Central  Google Scholar Nicholson, M. D., Anderson, C. J., Odom, D. T., Aitken, S. J. & Taylor, M. S. DNA lesion bypass and the stochastic dynamics of transcription-coupled repair. Proc. Natl Acad. Sci. USA 121, e2403871121 (2024).PubMed  PubMed Central  Google Scholar Kamieniarz-Gdula, K. & Proudfoot, N. J. Transcriptional control by premature termination: a forgotten mechanism. Trends Genet. 35, 553–564 (2019).PubMed  PubMed Central  Google Scholar Landsverk, H. B. et al. WDR82/PNUTS-PP1 prevents transcription-replication conflicts by promoting RNA polymerase II degradation on chromatin. Cell Rep. 33, 108469 (2020).PubMed  Google Scholar Marteijn, J. A., Lans, H., Vermeulen, W. & Hoeijmakers, J. H. Understanding nucleotide excision repair and its roles in cancer and ageing. Nat. Rev. Mol. Cell Biol. 15, 465–481 (2014).PubMed  Google Scholar Muniesa-Vargas, A. et al. Persistent TFIIH binding to non-excised DNA damage causes cell and developmental failure. Nat. Commun. 15, 3490 (2024).PubMed  PubMed Central  Google Scholar Kappenberger, J. et al. How to limit the speed of a motor: the intricate regulation of the XPB ATPase and translocase in TFIIH. Nucleic Acids Res. 48, 12282–12296 (2020).PubMed  PubMed Central  Google Scholar Bralic, A. et al. A scanning-to-incision switch in TFIIH-XPG induced by DNA damage licenses nucleotide excision repair. Nucleic Acids Res. 51, 1019–1033 (2023).PubMed  Google Scholar Coin, F. et al. Nucleotide excision repair driven by the dissociation of CAK from TFIIH. Mol. Cell 31, 9–20 (2008).PubMed  Google Scholar Yu, J. et al. Dynamic conformational switching underlies TFIIH function in transcription and DNA repair and impacts genetic diseases. Nat. Commun. 14, 2758 (2023).PubMed  PubMed Central  Google Scholar D’Souza, A., Kim, M., Chazin, W. J. & Scharer, O. D. Protein–protein interactions in the core nucleotide excision repair pathway. DNA Repair 141, 103728 (2024).PubMed  PubMed Central  Google Scholar Staresincic, L. et al. Coordination of dual incision and repair synthesis in human nucleotide excision repair. EMBO J. 28, 1111–1120 (2009).PubMed  PubMed Central  Google Scholar van Toorn, M. et al. Active DNA damage eviction by HLTF stimulates nucleotide excision repair. Mol. Cell 82, 1343–1358 e1348 (2022).PubMed  PubMed Central  Google Scholar Takebayashi, Y. et al. Antiproliferative activity of ecteinascidin 743 is dependent upon transcription-coupled nucleotide-excision repair. Nat. Med. 7, 961–966 (2001).PubMed  Google Scholar Damia, G. et al. Unique pattern of ET-743 activity in different cellular systems with defined deficiencies in DNA-repair pathways. Int. J. Cancer 92, 583–588 (2001).PubMed  Google Scholar Olivieri, M. et al. A genetic map of the response to DNA damage in human cells. Cell 182, 481–496 e421 (2020).PubMed  PubMed Central  Google Scholar Donahue, B. A., Yin, S., Taylor, J. S., Reines, D. & Hanawalt, P. C. Transcript cleavage by RNA polymerase II arrested by a cyclobutane pyrimidine dimer in the DNA template. Proc. Natl Acad. Sci. USA 91, 8502–8506 (1994).PubMed  PubMed Central  Google Scholar Gyenis, A. et al. Genome-wide RNA polymerase stalling shapes the transcriptome during aging. Nat. Genet. 55, 268–279 (2023).PubMed  PubMed Central  Google Scholar Epanchintsev, A. et al. Cockayne’s syndrome A and B proteins regulate transcription arrest after genotoxic stress by promoting ATF3 degradation. Mol. Cell 68, 1054–1066.e1056 (2017).PubMed  Google Scholar Bay, L. T. E., Syljuasen, R. G. & Landsverk, H. B. A novel, rapid and sensitive flow cytometry method reveals degradation of promoter proximal paused RNAPII in the presence and absence of UV. Nucleic Acids Res. 50, e89 (2022).PubMed  PubMed Central  Google Scholar Vichi, P. et al. Cisplatin- and UV-damaged DNA lure the basal transcription factor TFIID/TBP. EMBO J. 16, 7444–7456 (1997).PubMed  PubMed Central  Google Scholar Gyenis, A. et al. UVB induces a genome-wide acting negative regulatory mechanism that operates at the level of transcription initiation in human cells. PLoS Genet. 10, e1004483 (2014).PubMed  PubMed Central  Google Scholar Andrade-Lima, L. C., Veloso, A., Paulsen, M. T., Menck, C. F. & Ljungman, M. DNA repair and recovery of RNA synthesis following exposure to ultraviolet light are delayed in long genes. Nucleic Acids Res. 43, 2744–2756 (2015).PubMed  PubMed Central  Google Scholar van den Heuvel, D. et al. A CSB–PAF1C axis restores processive transcription elongation after DNA damage repair. Nat. Commun. 12, 1342 (2021).PubMed  PubMed Central  Google Scholar Mourgues, S. et al. ELL, a novel TFIIH partner, is involved in transcription restart after DNA repair. Proc. Natl Acad. Sci. USA 110, 17927–17932 (2013).PubMed  PubMed Central  Google Scholar Dinant, C. et al. Enhanced chromatin dynamics by FACT promotes transcriptional restart after UV-induced DNA damage. Mol. Cell 51, 469–479 (2013).PubMed  Google Scholar Oksenych, V. et al. Histone methyltransferase DOT1L drives recovery of gene expression after a genotoxic attack. PLoS Genet. 9, e1003611 (2013).PubMed  PubMed Central  Google Scholar Wojtaszek, J. L. & Williams, R. S. From the TOP: formation, recognition and resolution of topoisomerase DNA protein crosslinks. DNA Repair 142, 103751 (2024).PubMed  PubMed Central  Google Scholar Weickert, P. et al. SPRTN patient variants cause global-genome DNA-protein crosslink repair defects. Nat. Commun. 14, 352 (2023).PubMed  PubMed Central  Google Scholar Pachva, M. C., Kisselev, A. F., Matkarimov, B. T., Saparbaev, M. & Groisman, R. DNA-histone cross-links: formation and repair. Front. Cell Dev. Biol. 8, 607045 (2020).PubMed  PubMed Central  Google Scholar Ruggiano, A. & Ramadan, K. DNA-protein crosslink proteases in genome stability. Commun. Biol. 4, 11 (2021).PubMed  PubMed Central  Google Scholar Nakano, T. et al. T7 RNA polymerases backed up by covalently trapped proteins catalyze highly error prone transcription. J. Biol. Chem. 287, 6562–6572 (2012).PubMed  Google Scholar Ji, S. et al. Transcriptional bypass of DNA-protein and DNA-peptide conjugates by T7 RNA polymerase. ACS Chem. Biol. 14, 2564–2575 (2019).PubMed  PubMed Central  Google Scholar Sordet, O. et al. Hyperphosphorylation of RNA polymerase II in response to topoisomerase I cleavage complexes and its association with transcription- and BRCA1-dependent degradation of topoisomerase I. J. Mol. Biol. 381, 540–549 (2008).PubMed  PubMed Central  Google Scholar Desai, S. D. et al. Transcription-dependent degradation of topoisomerase I-DNA covalent complexes. Mol. Cell Biol. 23, 2341–2350 (2003).PubMed  PubMed Central  Google Scholar Gao, Y. et al. A CRISPR–Cas9 screen identifies EXO1 as a formaldehyde resistance gene. Nat. Commun. 14, 381 (2023).PubMed  PubMed Central  Google Scholar Zhao, Y. et al. Applying genome-wide CRISPR to identify known and novel genes and pathways that modulate formaldehyde toxicity. Chemosphere 269, 128701 (2021).PubMed  Google Scholar Burgos-Moron, E. et al. The Cockayne syndrome protein B is involved in the repair of 5-AZA-2′-deoxycytidine-induced DNA lesions. Oncotarget 9, 35069–35084 (2018).PubMed  PubMed Central  Google Scholar Liebau, R. C., Waters, C., Ahmed, A., Soni, R. K. & Gautier, J. UVSSA facilitates transcription-coupled repair of DNA interstrand crosslinks. DNA Repair 143, 103771 (2024).PubMed  Google Scholar Carnie, C. J., Jackson, S. P. & Stingele, J. Transcription-coupled repair of DNA-protein crosslinks. Trends Cell Biol. 35, 316–329 (2024).PubMed  Google Scholar Krastev, D. B. et al. The ubiquitin-dependent ATPase p97 removes cytotoxic trapped PARP1 from chromatin. Nat. Cell Biol. 24, 62–73 (2022).PubMed  PubMed Central  Google Scholar Kröning, A., van den Boom, J., Kracht, M., Kueck, A. F. & Meyer, H. Ubiquitin-directed AAA+ ATPase p97/VCP unfolds stable proteins crosslinked to DNA for proteolysis by SPRTN. J. Biol. Chem. 298, 101976 (2022).PubMed  PubMed Central  Google Scholar Leng, X. & Duxin, J. P. Targeting DNA-protein crosslinks via post-translational modifications. Front. Mol. Biosci. 9, 944775 (2022).PubMed  PubMed Central  Google Scholar Stingele, J., Bellelli, R. & Boulton, S. J. Mechanisms of DNA–protein crosslink repair. Nat. Rev. Mol. Cell Biol. 18, 563–573 (2017).PubMed  Google Scholar Quievryn, G. & Zhitkovich, A. Loss of DNA-protein crosslinks from formaldehyde-exposed cells occurs through spontaneous hydrolysis and an active repair process linked to proteosome function. Carcinogenesis 21, 1573–1580 (2000).PubMed  Google Scholar Nance, M. A. & Berry, S. A. Cockayne syndrome: review of 140 cases. Am. J. Med. Genet. 42, 68–84 (1992).PubMed  Google Scholar Spivak, G. UV-sensitive syndrome. Mutat. Res. 577, 162–169 (2005).PubMed  Google Scholar Kraemer, K. H. et al. Xeroderma pigmentosum, trichothiodystrophy and Cockayne syndrome: a complex genotype-phenotype relationship. Neuroscience 145, 1388–1396 (2007).PubMed  Google Scholar Ljungman, M. & Zhang, F. Blockage of RNA polymerase as a possible trigger for U.V. light-induced apoptosis. Oncogene 13, 823–831 (1996).PubMed  Google Scholar Proietti-De-Santis, L., Drane, P. & Egly, J. M. Cockayne syndrome B protein regulates the transcriptional program after UV irradiation. EMBO J. 25, 1915–1923 (2006).PubMed  PubMed Central  Google Scholar Wang, Y. et al. Dysregulation of gene expression as a cause of Cockayne syndrome neurological disease. Proc. Natl Acad. Sci. USA 111, 14454–14459 (2014).PubMed  PubMed Central  Google Scholar D’Errico, M., Pascucci, B., Iorio, E., Van Houten, B. & Dogliotti, E. The role of CSA and CSB protein in the oxidative stress response. Mech. Ageing Dev. 134, 261–269 (2013).PubMed  Google Scholar Lopes, A. F. C. et al. A C. elegans model for neurodegeneration in Cockayne syndrome. Nucleic Acids Res. 48, 10973–10985 (2020).PubMed  PubMed Central  Google Scholar Okur, M. N. et al. Cockayne syndrome proteins CSA and CSB maintain mitochondrial homeostasis through NAD(+) signaling. Aging Cell 19, e13268 (2020).PubMed  PubMed Central  Google Scholar van der Woude, M. et al. RNA polymerase II processing facilitates DNA repair and prevents DNA damage-induced neuronal and developmental failure. Preprint at bioRxiv https://doi.org/10.1101/2025.03.21.644538 (2025).Mouret, S., Charveron, M., Favier, A., Cadet, J. & Douki, T. Differential repair of UVB-induced cyclobutane pyrimidine dimers in cultured human skin cells and whole human skin. DNA Repair 7, 704–712 (2008).PubMed  Google Scholar Arvanitis, C. D., Ferraro, G. B. & Jain, R. K. The blood–brain barrier and blood-tumour barrier in brain tumours and metastases. Nat. Rev. Cancer 20, 26–41 (2020).PubMed  Google Scholar Teng, Y. et al. ROS-induced R loops trigger a transcription-coupled but BRCA1/2-independent homologous recombination pathway through CSB. Nat. Commun. 9, 4115 (2018).PubMed  PubMed Central  Google Scholar Menoni, H., Hoeijmakers, J. H. & Vermeulen, W. Nucleotide excision repair-initiating proteins bind to oxidative DNA lesions in vivo. J. Cell Biol. 199, 1037–1046 (2012).PubMed  PubMed Central  Google Scholar Guo, J., Hanawalt, P. C. & Spivak, G. Comet-FISH with strand-specific probes reveals transcription-coupled repair of 8-oxoGuanine in human cells. Nucleic Acids Res. 41, 7700–7712 (2013).PubMed  PubMed Central  Google Scholar Spivak, G. & Hanawalt, P. C. Host cell reactivation of plasmids containing oxidative DNA lesions is defective in Cockayne syndrome but normal in UV-sensitive syndrome fibroblasts. DNA Repair 5, 13–22 (2006).PubMed  Google Scholar Nardo, T. et al. A UV-sensitive syndrome patient with a specific CSA mutation reveals separable roles for CSA in response to UV and oxidative DNA damage. Proc. Natl Acad. Sci. USA 106, 6209–6214 (2009).PubMed  PubMed Central  Google Scholar Kitsera, N. et al. 8-Oxo-7,8-dihydroguanine in DNA does not constitute a barrier to transcription, but is converted into transcription-blocking damage by OGG1. Nucleic Acids Res. 39, 5926–5934 (2011).PubMed  PubMed Central  Google Scholar Mosbech, A. et al. DVC1 (C1orf124) is a DNA damage-targeting p97 adaptor that promotes ubiquitin-dependent responses to replication blocks. Nat. Struct. Mol. Biol. 19, 1084–1092 (2012).PubMed  Google Scholar Dingler, F. A. et al. Two aldehyde clearance systems are essential to prevent lethal formaldehyde accumulation in mice and humans. Mol. Cell 80, 996–1012.e1019 (2020).PubMed  PubMed Central  Google Scholar Oka, Y. et al. Digenic mutations in ALDH2 and ADH5 impair formaldehyde clearance and cause a multisystem disorder, AMeD syndrome. Sci. Adv. 6, eabd7197 (2020).PubMed  PubMed Central  Google Scholar Pontel, L. B. et al. Endogenous formaldehyde is a hematopoietic stem cell genotoxin and metabolic carcinogen. Mol. Cell 60, 177–188 (2015).PubMed  PubMed Central  Google Scholar Enoiu, M., Jiricny, J. & Scharer, O. D. Repair of cisplatin-induced DNA interstrand crosslinks by a replication-independent pathway involving transcription-coupled repair and translesion synthesis. Nucleic Acids Res. 40, 8953–8964 (2012).PubMed  PubMed Central  Google Scholar Slyskova, J. et al. Base and nucleotide excision repair facilitate resolution of platinum drugs-induced transcription blockage. Nucleic Acids Res. 46, 9537–9549 (2018).PubMed  PubMed Central  Google Scholar Iyama, T. et al. CSB interacts with SNM1A and promotes DNA interstrand crosslink processing. Nucleic Acids Res. 43, 247–258 (2015).PubMed  Google Scholar Semlow, D. R. & Walter, J. C. Mechanisms of vertebrate DNA interstrand cross-link repair. Annu. Rev. Biochem. 90, 107–135 (2021).PubMed  Google Scholar Ferri, D., Orioli, D. & Botta, E. Heterogeneity and overlaps in nucleotide excision repair disorders. Clin. Genet. 97, 12–24 (2020).PubMed  Google Scholar Sabatella, M. et al. Repair protein persistence at DNA lesions characterizes XPF defect with Cockayne syndrome features. Nucleic Acids Res. 46, 9563–9577 (2018).PubMed  PubMed Central  Google Scholar Chang, Y. C. et al. A common east-asian ALDH2 mutation causes metabolic disorders and the therapeutic effect of ALDH2 activators. Nat. Commun. 14, 5971 (2023).PubMed  PubMed Central  Google Scholar Perez-Miller, S. et al. Alda-1 is an agonist and chemical chaperone for the common human aldehyde dehydrogenase 2 variant. Nat. Struct. Mol. Biol. 17, 159–164 (2010).PubMed  PubMed Central  Google Scholar Schumacher, B., Pothof, J., Vijg, J. & Hoeijmakers, J. H. J. The central role of DNA damage in the ageing process. Nature 592, 695–703 (2021).PubMed  PubMed Central  Google Scholar Vermeij, W. P. et al. Restricted diet delays accelerated ageing and genomic stress in DNA-repair-deficient mice. Nature 537, 427–431 (2016).PubMed  PubMed Central  Google Scholar Mone, M. J. et al. Local UV-induced DNA damage in cell nuclei results in local transcription inhibition. EMBO Rep. 2, 1013–1017 (2001).PubMed  PubMed Central  Google Scholar Nieto Moreno, N., Olthof, A. M. & Svejstrup, J. Q. Transcription-coupled nucleotide excision repair and the transcriptional response to UV-induced DNA damage. Annu. Rev. Biochem. 92, 81–113 (2023).PubMed  Google Scholar Munoz, M. J. et al. DNA damage regulates alternative splicing through inhibition of RNA polymerase II elongation. Cell 137, 708–720 (2009).PubMed  Google Scholar Williamson, L. et al. UV irradiation induces a non-coding RNA that functionally opposes the protein encoded by the same gene. Cell 168, 843–855 e813 (2017).PubMed  PubMed Central  Google Scholar Tresini, M. et al. The core spliceosome as target and effector of non-canonical ATM signalling. Nature 523, 53–58 (2015).PubMed  PubMed Central  Google Scholar Epanchintsev, A. et al. Defective transcription of ATF3 responsive genes, a marker for Cockayne syndrome. Sci. Rep. 10, 1105 (2020).PubMed  PubMed Central  Google Scholar Kristensen, U. et al. Regulatory interplay of Cockayne syndrome B ATPase and stress-response gene ATF3 following genotoxic stress. Proc. Natl Acad. Sci. USA 110, E2261–E2270 (2013).PubMed  PubMed Central  Google Scholar Bouvier, D. et al. Dissecting regulatory pathways for transcription recovery following DNA damage reveals a non-canonical function of the histone chaperone HIRA. Nat. Commun. 12, 3835 (2021).PubMed  PubMed Central  Google Scholar Rockx, D. A. et al. UV-induced inhibition of transcription involves repression of transcription initiation and phosphorylation of RNA polymerase II. Proc. Natl Acad. Sci. USA 97, 10503–10508 (2000).PubMed  PubMed Central  Google Scholar Bugai, A. et al. P-TEFb activation by RBM7 shapes a pro-survival transcriptional response to genotoxic stress. Mol. Cell 74, 254–267.e210 (2019).PubMed  PubMed Central  Google Scholar Borisova, M. E. et al. p38-MK2 signaling axis regulates RNA metabolism after UV-light-induced DNA damage. Nat. Commun. 9, 1017 (2018).PubMed  PubMed Central  Google Scholar Lavigne, M. D., Konstantopoulos, D., Ntakou-Zamplara, K. Z., Liakos, A. & Fousteri, M. Global unleashing of transcription elongation waves in response to genotoxic stress restricts somatic mutation rate. Nat. Commun. 8, 2076 (2017).PubMed  PubMed Central  Google Scholar