A multi-omics molecular landscape of 30 tissues in aging female rhesus macaques

Wait 5 sec.

Data availabilityThe omics data are freely and publicly available. Level-2 data, including transcriptome raw counts and log2 peak areas for the proteome and metabolome, are accessible on Figshare at https://doi.org/10.6084/m9.figshare.26963386 (ref. 64). For the level-1 raw data, the raw FASTQ files of the transcriptome have been deposited in the Genome Sequence Archive at the National Genomics Data Center65,66 (GSA CRA026248), publicly accessible at https://ngdc.cncb.ac.cn/gsa. The raw LC–MS/MS data for the proteome have been deposited to the ProteomeXchange Consortium via the PRIDE67 partner repository with the dataset identifier PXD066108 and also deposited to OMIX66 (https://ngdc.cncb.ac.cn/omix, accession no. OMIX001778). The raw LC–MS/MS data for the metabolome are deposited in OMIX (https://ngdc.cncb.ac.cn/omix, accession no. OMIX001779).Code availabilityThe code to reproduce the results in this study is available on Figshare at https://doi.org/10.6084/m9.figshare.26963386 (ref. 64) or GitHub at https://github.com/GonghuaLi/Macaca_30tissue_aging. Supplementary Data 10 provides a comprehensive PDF document generated from the coding of R Markdown (RMD) file, containing all code and results.ReferencesLópez-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).Article  PubMed  PubMed Central  Google Scholar Kaeberlein, M., Rabinovitch, P. S. & Martin, G. M. Healthy aging: the ultimate preventative medicine. Science 350, 1191–1193 (2015).Article  CAS  PubMed  PubMed Central  Google Scholar Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. Hallmarks of aging: an expanding universe. Cell 186, 243–278 (2023).Article  CAS  PubMed  Google Scholar Schaum, N. et al. Ageing hallmarks exhibit organ-specific temporal signatures. Nature 583, 596–602 (2020).Article  CAS  PubMed  PubMed Central  Google Scholar Rando, T. A. & Wyss-Coray, T. Asynchronous, contagious and digital aging. Nat. Aging 1, 29–35 (2021).Article  PubMed  PubMed Central  Google Scholar Zhang, W. et al. SIRT6 deficiency results in developmental retardation in cynomolgus monkeys. Nature 560, 661–665 (2018).Article  CAS  PubMed  Google Scholar Colman, R. J. Non-human primates as a model for aging. Biochim. Biophys. Acta Mol. Basis Dis. 1864, 2733–2741 (2018).Article  CAS  PubMed  Google Scholar Anderson, R. M. & Colman, R. J. Prospects and perspectives in primate aging research. Antioxid. Redox Signal. 14, 203–205 (2011).Article  CAS  PubMed  PubMed Central  Google Scholar Warren, W. C. et al. Sequence diversity analyses of an improved rhesus macaque genome enhance its biomedical utility. Science 370, eabc6617 (2020).Article  CAS  PubMed  PubMed Central  Google Scholar Wang, S. et al. Single-cell transcriptomic atlas of primate ovarian aging. Cell 180, 585–600.e519 (2020).Article  CAS  PubMed  Google Scholar Liang, D. et al. Cellular and molecular landscape of mammalian sinoatrial node revealed by single-cell RNA sequencing. Nat. Commun. 12, 287 (2021).Article  CAS  PubMed  PubMed Central  Google Scholar Zhang, W. et al. A single-cell transcriptomic landscape of primate arterial aging. Nat. Commun. 11, 2202 (2020).Article  CAS  PubMed  PubMed Central  Google Scholar Li, M.-L. et al. 547 transcriptomes from 44 brain areas reveal features of the aging brain in nonhuman primates. Genome Biol. 20, 258 (2019).Article  CAS  PubMed  PubMed Central  Google Scholar Wang, S. et al. Deciphering primate retinal aging at single-cell resolution. Protein Cell 12, 889–898 (2021).Article  PubMed  Google Scholar Huang, D. et al. A single-nucleus transcriptomic atlas of primate testicular aging reveals exhaustion of the spermatogonial stem cell reservoir and loss of Sertoli cell homeostasis. Protein Cell 14, 888–907 (2023).PubMed  Google Scholar Li, J. et al. A single-cell transcriptomic atlas of primate pancreatic islet aging. Natl Sci. Rev. 8, nwaa127 (2021).Article  CAS  PubMed  Google Scholar Jing, Y. et al. Single-nucleus profiling unveils a geroprotective role of the FOXO3 in primate skeletal muscle aging. Protein Cell 14, 497–512 (2023).PubMed  Google Scholar Wolters, S. & Schumacher, B. Genome maintenance and transcription integrity in aging and disease. Front. Genet. 4, e19 (2013).Article  Google Scholar Zierer, J., Menni, C., Kastenmüller, G. & Spector, T. D. Integration of ‘omics’ data in aging research: from biomarkers to systems biology. Aging Cell 14, 933–944 (2015).Article  CAS  PubMed  PubMed Central  Google Scholar Consortium, G. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science 369, 1318–1330 (2020).Article  Google Scholar Melé, M. et al. The human transcriptome across tissues and individuals. Science 348, 660–665 (2015).Article  PubMed  PubMed Central  Google Scholar Jiang, L. et al. A quantitative proteome map of the human body. Cell 183, 269–283.e219 (2020).Article  CAS  PubMed  PubMed Central  Google Scholar Palmer, D., Fabris, F., Doherty, A., Freitas, A. A. & de Magalhães, J. P. Ageing transcriptome meta-analysis reveals similarities and differences between key mammalian tissues. Aging 13, 3313 (2021).Article  CAS  PubMed  PubMed Central  Google Scholar Rozowsky, J. et al. The EN-TEx resource of multi-tissue personal epigenomes & variant-impact models. Cell 186, 1493–1511.e40 (2023).Article  CAS  PubMed  PubMed Central  Google Scholar Keele, G. R. et al. Global and tissue-specific aging effects on murine proteomes. Cell Rep. 42, 112715 (2023).Article  CAS  PubMed  PubMed Central  Google Scholar Shen, X. et al. Nonlinear dynamics of multi-omics profiles during human aging. Nat. Aging 4, 1619–1634 (2024).Article  PubMed  PubMed Central  Google Scholar Contrepois, K. et al. Molecular choreography of acute exercise. Cell 181, 1112–1130.e1 (2020).Article  CAS  PubMed  PubMed Central  Google Scholar Kumar, L. & Futschik, M. E. Mfuzz: a software package for soft clustering of microarray data. Bioinformation 2, 5 (2007).Article  PubMed  PubMed Central  Google Scholar Avelar, R. A. et al. A multidimensional systems biology analysis of cellular senescence in aging and disease. Genome Biol. 21, 91 (2020).Article  CAS  PubMed  PubMed Central  Google Scholar Battle, A. et al. Impact of regulatory variation from RNA to protein. Science 347, 664–667 (2015).Article  CAS  PubMed  Google Scholar Chick, J. M. et al. Defining the consequences of genetic variation on a proteome-wide scale. Nature 534, 500–505 (2016).Article  CAS  PubMed  PubMed Central  Google Scholar Kim, M.-S. et al. A draft map of the human proteome. Nature 509, 575–581 (2014).Article  CAS  PubMed  PubMed Central  Google Scholar Li, G. H. et al. System-level metabolic modeling facilitates unveiling metabolic signature in exceptional longevity. Aging cell 21, e13595 (2022).Article  CAS  PubMed  PubMed Central  Google Scholar Aging Atlas, C. Aging Atlas: a multi-omics database for aging biology. Nucleic Acids Res. 49, D825–D830 (2021).Article  Google Scholar Huang, K. et al. AgeAnnoMO: a knowledgebase of multi-omics annotation for animal aging. Nucleic Acids Res. 52, D822–D834 (2024).Article  CAS  PubMed  Google Scholar Widjaja, A. A. et al. Inhibition of IL-11 signalling extends mammalian healthspan and lifespan. Nature 632, 157–165 (2024).Article  CAS  PubMed  PubMed Central  Google Scholar Colman, R. J., McKiernan, S. H., Aiken, J. M. & Weindruch, R. Muscle mass loss in rhesus monkeys: age of onset. Exp. Gerontol. 40, 573–581 (2005).Article  PubMed  Google Scholar Nilwik, R. et al. The decline in skeletal muscle mass with aging is mainly attributed to a reduction in type II muscle fiber size. Exp. Gerontol. 48, 492–498 (2013).Article  PubMed  Google Scholar Roy, R. R. et al. Fiber size and myosin phenotypes of selected rhesus hindlimb muscles after a 14-day spaceflight. J. Gravit. Physiol. 6, 55–62 (1999).CAS  PubMed  Google Scholar Ohyama, Y., Redheuil, A., Kachenoura, N., Ambale Venkatesh, B. & Lima, J. A. Imaging insights on the aorta in aging. Circulation Cardiovasc. Imaging 11, e005617 (2018).Article  Google Scholar Rezzani, R., Nardo, L., Favero, G., Peroni, M. & Rodella, L. F. Thymus and aging: morphological, radiological, and functional overview. Age 36, 313–351 (2014).Article  PubMed  Google Scholar Gingold, H. & Pilpel, Y. Determinants of translation efficiency and accuracy. Mol. Syst. Biol. 7, e481 (2011).Article  Google Scholar Tahmasebi, S., Sonenberg, N., Hershey, J. W. & Mathews, M. B. Protein synthesis and translational control: a historical perspective. Cold Spring Harb. Perspect. Biol. 11, a035584 (2019).Article  CAS  PubMed  PubMed Central  Google Scholar Wei, Y. N. et al. Transcript and protein expression decoupling reveals RNA binding proteins and miRNAs as potential modulators of human aging. Genome Biol. 16, 41 (2015).Article  PubMed  PubMed Central  Google Scholar Kelmer Sacramento, E. et al. Reduced proteasome activity in the aging brain results in ribosome stoichiometry loss and aggregation. Mol. Syst. Biol. 16, e9596 (2020).Article  CAS  PubMed  PubMed Central  Google Scholar Gerdes Gyuricza, I. et al. Genome-wide transcript and protein analysis highlights the role of protein homeostasis in the aging mouse heart. Genome Res. 32, 838–852 (2022).PubMed  PubMed Central  Google Scholar Hu, Z. et al. Ssd1 and Gcn2 suppress global translation efficiency in replicatively aged yeast while their activation extends lifespan. eLife 7, e35551 (2018).Article  PubMed  PubMed Central  Google Scholar Syntichaki, P., Troulinaki, K. & Tavernarakis, N. Protein synthesis is a novel determinant of aging in Caenorhabditis elegans. Ann. NY Acad. Sci. 1119, 289–295 (2007).Article  CAS  PubMed  Google Scholar Gerashchenko, M. V., Peterfi, Z., Yim, S. H. & Gladyshev, V. N. Translation elongation rate varies among organs and decreases with age. Nucleic Acids Res. 49, e9 (2021).Article  CAS  PubMed  Google Scholar Yu, L. et al. IgG is an aging factor that drives adipose tissue fibrosis and metabolic decline. Cell Metab. 36, 793–807.e795 (2024).Article  CAS  PubMed  PubMed Central  Google Scholar de Magalhaes, J. P., Curado, J. & Church, G. M. Meta-analysis of age-related gene expression profiles identifies common signatures of aging. Bioinformatics 25, 875–881 (2009).Article  PubMed  PubMed Central  Google Scholar Liu, X. et al. Clusterin transduces Alzheimer-risk signals to amyloidogenesis. Signal Transduct. Target. Ther. 7, 325 (2022).Article  CAS  PubMed  PubMed Central  Google Scholar Perez-Jimenez, M. M. et al. Steroid hormones sulfatase inactivation extends lifespan and ameliorates age-related diseases. Nat. Commun. 12, 49 (2021).Article  CAS  PubMed  PubMed Central  Google Scholar Benonisson, H. et al. CD3-bispecific antibody therapy turns solid tumors into inflammatory sites but does not install protective memory. Mol. Cancer Ther. 18, 312–322 (2019).Article  CAS  PubMed  Google Scholar Horai, Y., Kakimoto, T., Takemoto, K. & Tanaka, M. Quantitative analysis of histopathological findings using image processing software. J. Toxicol. Pathol. 30, 351–358 (2017).Article  CAS  PubMed  PubMed Central  Google Scholar Vijayashree, R., Aruthra, P. & Rao, K. R. A comparison of manual and automated methods of quantitation of oestrogen/progesterone receptor expression in breast carcinoma. J. Clin. Diagn. Res. 9, EC01-05 (2015).Google Scholar Wang, S., Yang, D. M., Rong, R., Zhan, X. & Xiao, G. Pathology image analysis using segmentation deep learning algorithms. Am. J. Pathol. 189, 1686–1698 (2019).Article  PubMed  PubMed Central  Google Scholar Jiao, X. et al. Design mechanism and property of the novel fluorescent probes for the identification of Microthrix parvicella in situ. Materials https://doi.org/10.3390/ma10070804 (2017).Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 (2017).Article  CAS  PubMed  PubMed Central  Google Scholar Schroeder, A. et al. The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol. Biol. 7, 3 (2006).Article  PubMed  PubMed Central  Google Scholar Zhao, Y. et al. TPM, FPKM, or normalized counts? A comparative study of quantification measures for the analysis of RNA-seq data from the NCI patient-derived models repository. J. Transl. Med. 19, 1–15 (2021).Article  CAS  Google Scholar Zhao, S., Ye, Z. & Stanton, R. Misuse of RPKM or TPM normalization when comparing across samples and sequencing protocols. RNA 26, 903–909 (2020).Article  CAS  PubMed  PubMed Central  Google Scholar Zhou, Y. et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 10, 1523 (2019).Article  PubMed  PubMed Central  Google Scholar Li, G.-H. & Kong, Q.-P. A multi-omics molecular landscape of 30 tissues in aging female rhesus macaques (Macaca mulatta). Figshare https://doi.org/10.6084/m9.figshare.26963386 (2025).Chen, T. et al. The Genome Sequence Archive family: toward explosive data growth and diverse data types. Genomics Proteom. Bioinform. 19, 578–583 (2021).Article  Google Scholar Members, C.-N. & Partners. Database resources of the National Genomics Data Center, China National Center for Bioinformation in 2025. Nucleic Acids Res. 53, D30–D44 (2025).Article  Google Scholar Perez-Riverol, Y. et al. The PRIDE database at 20 years: 2025 update. Nucleic Acids Res. 53, D543–D553 (2025).Article  PubMed  Google Scholar Download referencesAcknowledgementsThis work was supported by National Key R&D Program of China (2023YFC3603400 to Q.-P.K.), National Natural Science Foundation of China (82430049 to Q.-P.K.), the CAS Project for Young Scientists in Basic Research (YSBR-076 to Q.-P.K.), Major Special Projects of Yunnan province (2018ZF007), the project entitled ‘Transformation of sub totipotent stem cells based on the tree shrew model of multiple organ dysfunction syndrome’ (SYDW[2020]19), West Light Foundation (to F.-H.X.) of the Chinese Academy of Sciences, Yunnan Province Kunming Medical University Joint Special Key Project (202301AY070001-034), Key Technologies and Translational Research on Clinical-Grade Umbilical Cord Mesenchymal Stem Cell Products for Reversing Aging, Yunnan Applied Basic Research Project (202401AW070011, 202101AS070058, 202201AS070080 and 202301AT070281), Reserve Talent Project of Young and Middle-aged Academic and Technical Leaders in Yunnan Province (202305AC160029), High-level Talent Promotion and Training Project of Kunming (Spring City Plan; 2020SCP001 to Q.-P.K.), Yunnan Revitalization Talent Support Program Yunling Scholar Project (Q.-P.K.), Yunnan Revitalization Talent Support Program Young Talent Project (G.-H.L.), Ningbo Yongjiang Talent Introduction Programme (F.-H.X.) and Yunnan Revitalization Talent Support Program Top team (202505AT350003 and 202405AS350022). We thank Novogene for technical assistance in the transcriptomics, proteomics and metabolomics data acquisition, and C. Watts for help in proofreading the manuscript.Author informationAuthor notesThese authors contributed equally: Gong-Hua Li, Xiang-Qing Zhu, Fu-Hui Xiao.Authors and AffiliationsState Key Laboratory of Genetic Evolution & Animal Models, National Resource Center for Non-Human Primates, Kunming Primate Research Center, Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, ChinaGong-Hua Li, Fu-Hui Xiao, Longbao Lv, Fan-Qian Yin, Ming-Xia Ge & Qing-Peng KongStem Cells and Immune Cells Biomedical Techniques Integrated Engineering Laboratory of State and Regions, Cell Therapy Technology Transfer Medical Key Laboratory of Yunnan Province, Basic Medical Laboratory, 920th Hospital of the PLA Joint Logistics Support Force, Kunming, ChinaXiang-Qing Zhu, Xilong Zhao, Le Chang, Qiang Wang, Jing Zhao, Chuan Tian, Zian Li, Guangping Ruan, Rongqing Pang, Jing Gao, Lihua Ma & Xing-Hua PanDepartment of Cardiology, The Affiliated Lihuili Hospital of Ningbo University, School of Medicine, Ningbo University, Ningbo, ChinaFu-Hui XiaoCAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, ChinaQing-Peng KongAuthorsGong-Hua LiView author publicationsSearch author on:PubMed Google ScholarXiang-Qing ZhuView author publicationsSearch author on:PubMed Google ScholarFu-Hui XiaoView author publicationsSearch author on:PubMed Google ScholarXilong ZhaoView author publicationsSearch author on:PubMed Google ScholarLongbao LvView author publicationsSearch author on:PubMed Google ScholarFan-Qian YinView author publicationsSearch author on:PubMed Google ScholarLe ChangView author publicationsSearch author on:PubMed Google ScholarMing-Xia GeView author publicationsSearch author on:PubMed Google ScholarQiang WangView author publicationsSearch author on:PubMed Google ScholarJing ZhaoView author publicationsSearch author on:PubMed Google ScholarChuan TianView author publicationsSearch author on:PubMed Google ScholarZian LiView author publicationsSearch author on:PubMed Google ScholarGuangping RuanView author publicationsSearch author on:PubMed Google ScholarRongqing PangView author publicationsSearch author on:PubMed Google ScholarJing GaoView author publicationsSearch author on:PubMed Google ScholarLihua MaView author publicationsSearch author on:PubMed Google ScholarXing-Hua PanView author publicationsSearch author on:PubMed Google ScholarQing-Peng KongView author publicationsSearch author on:PubMed Google ScholarContributionsQ.-P.K. and X.-H.P. conceived and designed the study. G.-H.L. performed the multi-omics analysis. X.-Q.Z. conducted the experimental validation. G.-H.L., F.-H.X., F.-Q.Y. and M.-X.G. performed the statistical analysis. X.-Q.Z., X.Z., L.L., L.C., Q.W. and J.Z. collected samples. X.-Q.Z., X.Z., L.C., Q.W. and J.Z. performed H&E staining and scoring. T.C., Z.L., G.R., R.P., J.G. and L.M. performed immunofluorescence and scoring. G.-H.L., F.-H.X., X.-Q.Z., X.-H.P. and Q.-P.K. drafted and revised the manuscript. All authors read and approved the final manuscript.Corresponding authorsCorrespondence to Xing-Hua Pan or Qing-Peng Kong.Ethics declarationsCompeting interestsThe authors declare no competing interests.Peer reviewPeer review informationNature Methods thanks João Pedro de Magalhães, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available. Primary Handling Editor: Madhura Mukhopadhyay, in collaboration with the Nature Methods team.Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Extended dataExtended Data Fig. 1 Aging-related mRNAs and proteins across 30 tissues in macaques.Aging-associated mRNAs and proteins overlapping across 30 tissues were identified using a false discovery rate (FDR)  0.008. Here, βp represents the age effect size derived from a pooled linear regression model (molecular abundance ~ age + tissue), while βt represents the age effect size from tissue-specific linear models (molecular abundance ~ age per tissue). For each individual tissue, statistical significance was assessed using two-sided t-tests on the age coefficients derived from the tissue-specific linear models, and these P values were not adjusted for multiple comparisons. Exact P values are provided in Supplementary Data 1-2. The P values of