Fan, Y. & Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 19, 55–71 (2021).Google Scholar Krautkramer, K. A., Fan, J. & Bäckhed, F. Gut microbial metabolites as multi-kingdom intermediates. Nat. Rev. Microbiol. 19, 77–94 (2021).Google Scholar Koh, A., De Vadder, F., Kovatcheva-Datchary, P. & Bäckhed, F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165, 1332–1345 (2016).Google Scholar Xie, Z., He, W., Gobbi, A., Bertram, H. C. & Nielsen, D. S. The effect of in vitro simulated colonic pH gradients on microbial activity and metabolite production using common prebiotics as substrates. BMC Microbiol. 24, 83 (2024).Google Scholar Zhang, L., Liu, C., Jiang, Q. & Yin, Y. Butyrate in energy metabolism: there is still more to learn. Trends Endocrinol. Metab. 32, 159–169 (2021).Google Scholar Andriamihaja, M. et al. The deleterious metabolic and genotoxic effects of the bacterial metabolite p-cresol on colonic epithelial cells. Free Radic. Biol. Med. 85, 219–227 (2015).Google Scholar El Kaoutari, A., Armougom, F., Gordon, J. I., Raoult, D. & Henrissat, B. The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. Nat. Rev. Microbiol. 11, 497–504 (2013).Google Scholar Drula, E. et al. The carbohydrate-active enzyme database: functions and literature. Nucleic Acids Res. 50, D571–d577 (2022).Google Scholar Henrissat, B. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 280, 309–316 (1991).Google Scholar You, Y. et al. Carbohydrate binding modules: Compact yet potent accessories in the specific substrate binding and performance evolution of carbohydrate-active enzymes. Biotechnol. Adv. 73, 108365 (2024).Google Scholar Ozyurt, V. H. & Ötles, S. Effect of food processing on the physicochemical properties of dietary fibre. Acta Sci. Pol. Technol. Aliment 15, 233–245 (2016).Google Scholar Do, D. T., Singh, J., Johnson, S. & Singh, H. Probing the double-layered cotyledon cell structure of navy beans: barrier effect of the protein matrix on in vitro starch digestion. Nutrients 15, 105 (2023).Google Scholar Xiong, W., Devkota, L., Zhang, B., Muir, J. & Dhital, S. Intact cells: “Nutritional capsules” in plant foods. Compr. Rev. Food Sci. Food Saf. 21, 1198–1217 (2022).Google Scholar Özdemir, A. & Buyuktuncer, Z. Dietary legumes and gut microbiome: a comprehensive review. Crit. Rev. Food Sci. Nutr. 1–15 (2024).Rovalino-Córdova, A. M., Fogliano, V. & Capuano, E. The effect of cell wall encapsulation on macronutrients digestion: a case study in kidney beans. Food Chem. 286, 557–566 (2019).Google Scholar Guan, N. et al. Cell wall integrity of pulse modulates the in vitro fecal fermentation rate and microbiota composition. J. Agric. Food Chem. 68, 1091–1100 (2020).Google Scholar Delannoy-Bruno, O. et al. An approach for evaluating the effects of dietary fiber polysaccharides on the human gut microbiome and plasma proteome. Proc. Natl. Acad. Sci. USA 119, e2123411119 (2022).Google Scholar Theodorou, M. K., Williams, B. A., Dhanoa, M. S., McAllan, A. B. & France, J. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed Sci. Technol. 48, 185–197 (1994).Google Scholar Lee, K.-S. et al. Exploring optimal environmental factors for fermentative hydrogen production from starch using mixed anaerobic microflora. Int. J. Hydrog. Energy 33, 1565–1572 (2008).Google Scholar Huang, Y. et al. Cell wall permeability of pinto bean cotyledon cells regulate in vitro fecal fermentation and gut microbiota. Food Funct. 12, 6070–6082 (2021).Google Scholar Jonathan, M. C. et al. In vitro fermentation of 12 dietary fibres by faecal inoculum from pigs and humans. Food Chem. 133, 889–897 (2012).Google Scholar Höfte, H. & Voxeur, A. Plant cell walls. Curr. Biol. 27, R865–R870 (2017).Google Scholar Warren, F. J. et al. Food starch structure impacts gut microbiome composition. mSphere 3 (2018).Hays, K. E., Pfaffinger, J. M. & Ryznar, R. The interplay between gut microbiota, short-chain fatty acids, and implications for host health and disease. Gut Microbes 16, 2393270 (2024).Google Scholar Tekin, T. & Dincer, E. Effect of resistant starch types as a prebiotic. Appl. Microbiol. Biotechnol. 107, 491–515 (2023).Google Scholar Smith, E. A. & Macfarlane, G. T. Dissimilatory amino acid metabolism in human colonic bacteria. Anaerobe 3, 327–337 (1997).Google Scholar Xie, Z., Eriksen, D. B., Johnsen, P. R., Nielsen, D. S. & Frøkiær, H. The effect of microbial metabolites from colonic protein fermentation on bacteria-induced cytokine production in dendritic cells. BioFactors 51, e70007 (2025).Google Scholar Holland, C., Ryden, P., Edwards, C. H. & Grundy, M. M.-L. Plant cell walls: impact on nutrient bioaccessibility and digestibility. Foods 9, 201 (2020).Google Scholar Yokoo, K., Yamamoto, Y. & Suzuki, T. Ammonia impairs tight junction barriers by inducing mitochondrial dysfunction in Caco-2 cells. Faseb J. 35, e21854 (2021).Google Scholar Luo, C. et al. Ammonia drives dendritic cells into dysfunction. J. Immunol. 193, 1080–1089 (2014).Google Scholar Lin, H. C. & Visek, W. J. Colon mucosal cell damage by ammonia in rats. J. Nutr. 121, 887–893 (1991).Google Scholar Diether, N. E. & Willing, B. P. Microbial fermentation of dietary protein: an important factor in diet-microbe-host interaction. Microorganisms 7, https://doi.org/10.3390/microorganisms7010019 (2019).Mahowald, M. A. et al. Characterizing a model human gut microbiota composed of members of its two dominant bacterial phyla. Proc. Natl. Acad. Sci. USA 106, 5859–5864 (2009).Google Scholar COLLINS, M. D. et al. The phylogeny of the genus clostridium: proposal of five new genera and eleven new species combinations. Int. J. Syst. Evolut. Microbiol. 44, 812–826 (1994).Google Scholar Clausen, U. et al. Catabolic network of the fermentative gut bacterium Phocaeicola vulgatus (Phylum Bacteroidota) from a physiologic-proteomic perspective. Microb. Physiol. 34, 88–107 (2024).Google Scholar Zhou, W. et al. The gut microbe Bacteroides fragilis ameliorates renal fibrosis in mice. Nat. Commun. 13, 6081 (2022).Google Scholar He, Q. et al. Protective effects of a new generation of probiotic Bacteroides fragilis against colitis in vivo and in vitro. Sci. Rep. 13, 15842 (2023).Google Scholar Wei, Y. et al. Alterations of gut microbiome in autoimmune hepatitis. Gut 69, 569–577 (2020).Google Scholar Rocha, I. M. G. D. et al. Pro-inflammatory diet is correlated with high veillonella rogosae, gut inflammation and clinical relapse of inflammatory bowel disease. Nutrients 15, 4148 (2023).Google Scholar Kaur, H., Das, C. & Mande, S. S. In silico analysis of putrefaction pathways in bacteria and its implication in colorectal cancer. Front. Microbiol. 8, https://doi.org/10.3389/fmicb.2017.02166 (2017).Zafar, H. & Saier, M. H. Jr. Gut Bacteroides species in health and disease. Gut Microbes 13, 1–20 (2021).Google Scholar Cheng, J., Hu, J., Geng, F. & Nie, S. Bacteroides utilization for dietary polysaccharides and their beneficial effects on gut health. Food Sci. Hum. Wellness 11, 1101–1110 (2022).Google Scholar Fu, T. et al. Isolation of alginate-degrading bacteria from the human gut microbiota and discovery of bacteroides xylanisolvens AY11-1 as a novel anti-colitis probiotic bacterium. Nutrients 15, https://doi.org/10.3390/nu15061352 (2023).Pathak, P. et al. Intestine farnesoid X receptor agonist and the gut microbiota activate G-protein bile acid receptor-1 signaling to improve metabolism. Hepatology 68, 1574–1588 (2018).Google Scholar Wang, K. et al. Parabacteroides distasonis Alleviates Obesity and Metabolic Dysfunctions via Production of Succinate and Secondary Bile Acids. Cell Rep. 26, 222–235.e225 (2019).Google Scholar Cantarel, B. L. et al. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res. 37, D233–D238 (2008).Google Scholar Liang, D. et al. Implication of a galactomannan-binding GH2 β-mannosidase in mannan utilization by Caldicellulosiruptor bescii. Biochem. Biophys. Res. Commun. 467, 334–340 (2015).Google Scholar Baumann, M. J. et al. Structural evidence for the evolution of xyloglucanase activity from xyloglucan endo-transglycosylases: biological implications for cell wall metabolism. Plant Cell 19, 1947–1963 (2007).Google Scholar Kondo, T. et al. Characterization of three GH35 β-galactosidases, enzymes able to shave galactosyl residues linked to rhamnogalacturonan in pectin, from Penicillium chrysogenum 31B. Appl. Microbiol. Biotechnol. 104, 1135–1148 (2020).Google Scholar O’Neill, E. C. et al. Crystal structure of a novel two domain GH78 family α-rhamnosidase from lebsiella oxytoca with rhamnose bound. Proteins: Struct. Funct. Bioinforma. 83, 1742–1749 (2015).Google Scholar Abbott, D. W. et al. Analysis of the structural and functional diversity of plant cell wall specific family 6 carbohydrate binding modules. Biochemistry 48, 10395–10404 (2009).Google Scholar Koropatkin, N. M., Cameron, E. A. & Martens, E. C. How glycan metabolism shapes the human gut microbiota. Nat. Rev. Microbiol. 10, 323–335 (2012).Google Scholar Zhao, T. et al. Degradation of xylan by human gut Bacteroides xylanisolvens XB1A. Carbohydr. Polym. 315, 121005 (2023).Google Scholar Zhu, Z. et al. Three glycoside hydrolase family 12 enzymes display diversity in substrate specificities and synergistic action between each other. Mol. Biol. Rep. 46, 5443–5454 (2019).Google Scholar Hall, B. G., Pikis, A. & Thompson, J. Evolution and biochemistry of family 4 glycosidases: implications for assigning enzyme function in sequence annotations. Mol. Biol. Evolution 26, 2487–2497 (2009).Google Scholar Bott, R. et al. Three-dimensional structure of an intact glycoside hydrolase family 15 glucoamylase from hypocrea jecorina. Biochemistry 47, 5746–5754 (2008).Google Scholar Janeček, Š., Svensson, B. & MacGregor, E. A. α-Amylase: an enzyme specificity found in various families of glycoside hydrolases. Cell. Mol. Life Sci. 71, 1149–1170 (2014).Google Scholar Janeček, Š., Mareček, F., MacGregor, E. A. & Svensson, B. Starch-binding domains as CBM families–history, occurrence, structure, function and evolution. Biotechnol. Adv. 37, 107451 (2019).Google Scholar Bouma, C. L., Reizer, J., Reizer, A., Robrish, S. A. & Thompson, J. 6-phospho-alpha-D-glucosidase from Fusobacterium mortiferum: cloning, expression, and assignment to family 4 of the glycosylhydrolases. J. Bacteriol. 179, 4129–4137 (1997).Google Scholar Xu, J. et al. Evolution of symbiotic bacteria in the distal human intestine. PLoS Biol. 5, e156 (2007).Google Scholar Thompson, J., Gentry-Weeks, C. R., Nguyen, N. Y., Folk, J. E. & Robrish, S. A. Purification from Fusobacterium mortiferum ATCC 25557 of a 6-phosphoryl-O-alpha-D-glucopyranosyl:6-phosphoglucohydrolase that hydrolyzes maltose 6-phosphate and related phospho-alpha-D-glucosides. J. Bacteriol. 177, 2505–2512 (1995).Google Scholar Voet, D. & Voet, J. G. Biochemistry. (John Wiley & Sons, 2010).Jakhar, D., Sarin, S. K. & Kaur, S. Gut microbiota and dynamics of ammonia metabolism in liver disease. npj Gut Liver 1, 11 (2024).Google Scholar Kan, L. et al. Nutrients, phytochemicals and antioxidant activities of 26 kidney bean cultivars. Food Chem. Toxicol. 108, 467–477 (2017).Google Scholar Wei, Y. -H, Ma, X., Zhao, J. -C, Wang, X. -Q & Gao, C. -Q. Succinate metabolism and its regulation of host-microbe interactions. Gut. Microbes. 15, 2190300 (2023).Google Scholar Neis, E. P., Dejong, C. H. & Rensen, S. S. The role of microbial amino acid metabolism in host metabolism. Nutrients 7, 2930–2946 (2015).Google Scholar Yao, C. K. et al. Modulation of colonic hydrogen sulfide production by diet and mesalazine utilizing a novel gas-profiling technology. Gut Microbes 9, 510–522 (2018).Google Scholar Xue, C. et al. Tryptophan metabolism in health and disease. Cell Metab. 35, 1304–1326 (2023).Google Scholar Teufel, R. et al. Bacterial phenylalanine and phenylacetate catabolic pathway revealed. Proc. Natl. Acad. Sci. USA 107, 14390–14395 (2010).Google Scholar Wu, C. et al. Salt adopted in soaking solution controls the yield and starch digestion kinetics of intact pulse cotyledon cells. Carbohydr. Polym. 314, 120949 (2023).Google Scholar Xie, Z. et al. In vitro colonic fermentation profiles and microbial responses of propionylated high-amylose maize starch by individual Bacteroides-dominated enterotype inocula. Food Res. Int. 144, 110317 (2021).Google Scholar Kaur, A., Rose, D. J., Rumpagaporn, P., Patterson, J. A. & Hamaker, B. R. In Vitro Batch Fecal Fermentation Comparison of Gas and Short-Chain Fatty Acid Production Using “Slowly Fermentable” Dietary Fibers. J. Food Sci. 76, H137–H142 (2011).Google Scholar Galvão, J. A. et al. Determination of ammonia in water samples. Handb. Water Anal. 5, 249 (2013).Google Scholar Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).Google Scholar Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).Google Scholar Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 20, 257 (2019).Google Scholar Chaumeil, P. A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36, 1925–1927 (2019).Google Scholar Li, D., Liu, C. M., Luo, R., Sadakane, K. & Lam, T. W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).Google Scholar Steinegger, M. & Söding, J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat. Biotechnol. 35, 1026–1028 (2017).Google Scholar Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinf. 11, 119 (2010).Google Scholar Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).Google Scholar McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).Google Scholar Wickham, H. ggplot2. WIREs Comput. Stat. 3, 180–185 (2011).Google Scholar Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60 (2011).Google Scholar Ter Braak, C. J. CANOCO-a FORTRAN program for canonical community ordination by [partial][etrended][canonical] correspondence analysis, principal components analysis and redundancy analysis (version 2.1). (MLV, 1988).Download references