Embryologists are the scientists behind the scenes of in vitro fertilization who oversee the development and selection of embryos, prepare them for transfer, and maintain the lab environment. They’ve been a critical part of IVF for decades, but their job has gotten a whole lot busier in recent years as demand for the fertility treatment skyrockets and clinics struggle to keep up. The United States is in fact facing a critical shortage of both embryologists and genetic counselors. Klaus Wiemer, a veteran embryologist and IVF lab director, believes artificial intelligence might help by predicting embryo health in real time and unlocking new avenues for productivity in the lab. Wiemer is the chief scientific officer and head of clinical affairs at Fairtility, a company that uses artificial intelligence to shed light on the viability of eggs and embryos before proceeding with IVF. The company’s algorithm, called CHLOE (for Cultivating Human Life through Optimal Embryos), has been trained on millions of embryo data points and outcomes and can quickly sift through a patient’s embryos to point the clinician to the ones with the highest potential for successful implantation. This, the company claims, will improve time to pregnancy and live births. While its effectiveness has been tested only retrospectively to date, CHLOE is the first and only FDA-approved AI tool for embryo assessment. Current challenge When a patient undergoes IVF, the goal is to make genetically normal embryos. Embryologists collect cells from each embryo and send them off for external genetic testing. The results of this biopsy can take up to two weeks, and the process can add thousands of dollars to the treatment cost. Moreover, passing the screen just means an embryo has the correct number of chromosomes. That number doesn’t necessarily reflect the overall health of the embryo. “An embryo has one singular function, and that is to divide,” says Wiemer. “There are millions of data points concerning embryo cell division, cell division characteristics, area and size of the inner cell mass, and the number of times the trophectoderm [the layer that contributes to the future placenta] contracts.”The AI model allows for a group of embryos to be constantly measured against the optimal characteristics at each stage of development. “What CHLOE answers is: How well did that embryo develop? And does it have all the necessary components that are needed in order to make a healthy implantation?” says Wiemer. CHLOE produces an AI score reflecting all the analysis that’s been done within an embryo. In the near future, Wiemer says, reducing the percentage of abnormal embryos that IVF clinics transfer to patients should not require a biopsy: “Every embryology laboratory will be doing automatic assessments of embryo development.” A changing fieldWiemer, who started his career in animal science, says the difference between animal embryology and human embryology is the extent of paperwork. “Embryologists spend 40% of their time on non-embryology skills,” he adds. “AI will allow us to declutter the embryology field so we can get back to being true scientists.” This means spending more time studying the embryos, ensuring that they are developing normally, and using all that newfound information to get better at picking which embryos to transfer. “CHLOE is like having a virtual assistant in the lab to help with embryo selection, ensure conditions are optimal, and send out reports to patients and clinical staff,” he says. “Getting to study data and see what impacts embryo development is extremely rewarding, given that this capability was impossible a few years ago.” Amanda Smith is a freelance journalist and writer reporting on culture, society, human interest, and technology.