Category-specific perceptual learning of robust object recognition modelled using deep neural networks

Wait 5 sec.

by Hojin Jang, Frank TongObject recognition in real-world environments requires dealing with considerable ambiguity, yet the human visual system is highly robust to noisy viewing conditions. Here, we investigated the role of perceptual learning in the acquisition of robustness in both humans and deep neural networks (DNNs). Specifically, we sought to determine whether perceptual training with object images in Gaussian noise, drawn from certain animate or inanimate categories, would lead to category-specific or category-general improvements in human robustness. Moreover, might DNNs provide viable models of human perceptual learning? Both before and after training, we evaluated the noise threshold required for accurate recognition using novel object images. Human observers were quite robust to noise before training, but showed additional category-specific improvement after training with only a few hundred noisy object examples. In comparison, standard DNNs initially lacked robustness, then showed both category-general and category-specific learning after training with the same noisy examples. We further evaluated DNN models that were pre-trained with moderately noisy images to match human pre-training accuracy. Notably, these models only showed category-specific improvement, matching the overall pattern of learning exhibited by human observers. A layer-wise analysis of DNN responses revealed that category-general learning effects emerged in the lower layers, whereas category-specific improvements emerged in the higher layers. Our findings provide support for the notion that robustness to noisy visual conditions arises through learning, humans likely acquire robustness from everyday encounters with real-world noise, and additional category-specific improvements exhibited by humans and DNNs involve learning at higher levels of visual representation.